The β-model for random hypergraphs

Despina Stasi (IIT)

Based on joint work with
Kayvan Sadeghi (CMU)
Sonja Petrović (IIT)
Alessandro Rinaldo (CMU)
Stephen E. Fienberg (CMU)

Algebraic Statistics 2014
Illinois Institute of Technology
May 21, 2014
Motivation
- Higher-order interactions in networks

The β-model for graphs
- A linear exponential family

β-models for hypergraphs
- New exponential families for higher-order interactions.
 - k-uniform variant
 - Layered variant
 - General variant

Parameter Estimation

Concluding remarks
Modeling Higher-order Relational Data

- Standard network problem: model binary interactions between individuals.
 - Given a model, generate a graph at random from the model.
 - Given an observed network, and assuming it belongs to a particular model, estimate the parameters.
- Binary interactions \rightarrow model with graphs (or digraphs).
Modeling Higher-order Relational Data

- Standard network problem: model binary interactions between individuals.
 - Given a model, generate a graph at random from the model.
 - Given an observed network, and assuming it belongs to a particular model, estimate the parameters.
- Binary interactions \implies model with graphs (or digraphs).
- Modeling k-ary interactions for $k \geq 3$?
- Examples: a co-authorship data set, team structures in organizations, sets of receivers within the range of a transmitter e.t.c.
Motivation

Higher-order interactions in networks

Modeling Higher-order Relational Data

- Standard network problem: model binary interactions between individuals.
 - Given a model, generate a graph at random from the model.
 - Given an observed network, and assuming it belongs to a particular model, estimate the parameters.

- Binary interactions \iff model with graphs (or digraphs).

- Modeling k-ary interactions for $k \geq 3$?

- Examples: a co-authorship data set, team structures in organizations, sets of receivers within the range of a transmitter e.t.c.

- One can replace each k-ary relation with $\binom{k}{2}$ binary relations, in other words mapping each hyperedge onto the underlying graph.

- However such a process, inevitably causes information loss.
Modeling Higher-order Relational Data

- Standard network problem: model binary interactions between individuals.
 - Given a model, generate a graph at random from the model.
 - Given an observed network, and assuming it belongs to a particular model, estimate the parameters.
- Binary interactions \rightarrow model with graphs (or digraphs).
- Modeling k-ary interactions for $k \geq 3$?
- Examples: a co-authorship data set, team structures in organizations, sets of receivers within the range of a transmitter e.t.c.
- One can replace each k-ary relation with $\binom{k}{2}$ binary relations, in other words mapping each hyperedge onto the underlying graph.
- However such a process, inevitably causes information loss.
- Natural discrete structure to model higher order interactions: hypergraphs.
A hypergraph is a pair \((V, F)\)
- \(V\): vertex set. Here: \(V = \{1, 2, \ldots, n\} = [n]\).
- \(F\): (hyper)edge set containing subsets of \(V\) of any size.

Example

Adam, Barbara and Cassandra authored a paper as a group.
Adam and David authored a second paper, and Cassandra and David authored a third paper.

\[H_1 : V = \{A, B, C, D\}, \quad F_1 = \{ABC, AD, CD\}.\]
Example

- Reducing the co-authorship data set to a graph would give G the union of the two triangles ABC, and ACD.

\[V = \{A, B, C, D\} \]
\[E(H_1) = \{ABC, AD, CD\}. \]
\[E(G) = \{AB, AC, AD, BC, CD\} \]

Figure: H_1, G
Example

- Reducing the co-authorship data set to a graph would give G the union of the two triangles ABC, and ACD.

![Diagram](image)

$V = \{A, B, C, D\}$

$E(H_1) = \{ABC, AD, CD\}$.

$E(G) = \{AB, AC, AD, BC, CD\}$

Figure: H_1, G

- Q. How many papers gave rise to G?
Example

- Reducing the co-authorship data set to a graph would give G the union of the two triangles ABC, and ACD.

![Diagram showing nodes A, B, C, D and edges between them]

$V = \{A, B, C, D\}$

$E(H_1) = \{ABC, AD, CD\}$.

$E(G) = \{AB, AC, AD, BC, CD\}$

$E(H_2) = \{ABC, ACD\}$.

Figure: H_1, G, H_2

- Q. How many papers gave rise to G? 3?
Example

- Reducing the co-authorship data set to a graph would give G the union of the two triangles ABC, and ACD.

![Diagram showing graphs H_1, G, and H_2]

$$V = \{A, B, C, D\}$$
$$E(H_1) = \{ABC, AD, CD\}.$$
$$E(G) = \{AB, AC, AD, BC, CD\}.$$
$$E(H_2) = \{ABC, ACD\}.$$

Figure: H_1, G, H_2

- Q. How many papers gave rise to G? 3? 2?
Example

Reducing the co-authorship data set to a graph would give G the union of the two triangles ABC, and ACD.

$V = \{A, B, C, D\}$

$E(H_1) = \{ABC, AD, CD\}$.

$E(G) = \{AB, AC, AD, BC, CD\}$

$E(H_2) = \{ABC, ACD\}$.

Figure: H_1, G, H_2

Q. How many papers gave rise to G? 3? 2? 5?

So how can we model random hypergraphs?
Example

- Reducing the co-authorship data set to a graph would give G the union of the two triangles ABC, and ACD.

\[V = \{A, B, C, D\} \]
\[E(H_1) = \{ABC, AD, CD\}. \]
\[E(G) = \{AB, AC, AD, BC, CD\} \]
\[E(H_2) = \{ABC, ACD\}. \]

Figure: H_1, G, H_2

- Q. How many papers gave rise to G? 3? 2? 5?
- So how can we model random hypergraphs?
- Use the degree sequence;
Motivation

Higher-order interactions in networks

Example

- Reducing the co-authorship data set to a graph would give G the union of the two triangles ABC, and ACD.

![Figure: H_1, G, H_2]

- $V = \{A, B, C, D\}$
- $E(H_1) = \{ABC, AD, CD\}$
- $E(G) = \{AB, AC, AD, BC, CD\}$
- $E(H_2) = \{ABC, ACD\}$

Q. How many papers gave rise to G? 3? 2? 5?

So how can we model random hypergraphs?

- Use the degree sequence; recall the β model for graphs.
The β-model for graphs

A linear exponential family

β-model for graphs

Probability of edge

- $\beta_i \in \mathbb{R}$: propensity of node i to have neighbors.

$$P_\beta(\text{edge } (i,j) \text{ appearing in } G) = p_{i,j} = \frac{e^{\beta_i + \beta_j}}{1 + e^{\beta_i + \beta_j}}.$$

Probability of graph

g: fixed graph; degree sequence $d(g) = (d_1, d_2, \ldots d_n)$;
G random variable drawn from the distribution P_β:

$$P_\beta(G = g) = \exp \left\{ \sum_i \beta_i d_i - \psi(\beta) \right\},$$

$$\psi(\beta) = \sum_{i<j} \log (1 + e^{\beta_i + \beta_j}), \text{ normalizing constant.}$$
The β-model for graphs

A linear exponential family

β-model for graphs

Probability of graph

g: fixed graph; degree sequence $d(g) = (d_1, d_2, \ldots, d_n)$;

G random variable drawn from the distribution P_β:

$$
P_\beta(G = g) = \exp \left\{ \sum_i \beta_i d_i - \psi(\beta) \right\},$$

$$
\psi(\beta) = \sum_{i<j} \log (1 + e^{\beta_i + \beta_j}), \text{ normalizing constant.}
$$

- Linear Exponential family; sufficient statistics vector is d.

Despina Stasi (IIT)
β-model for graphs

- Linear Exponential family; sufficient statistics vector is \(d \).
- Well-studied model:
 - Thorough analysis in (Chatterjee et al 2011), who coined the name.
 - (Park and Newman 2004, Blitzstein and Diaconis 2009)
 - undirected version of the \(p_1 \)-model (Holland-Leinhardt 1981)
- MLE estimation via iterative proportional fitting/scalling or fixed point algorithm.
- MLE non-existence related to the polytope of degree sequences of graphs (Rinaldo et al 2012).
Degree Sequence of a Hypergraph

- $d = (d_1, d_2, \ldots, d_n)$: the degree sequence of a hypergraph.
- d_i: number of hyperedges of H containing vertex i.
- Recall our co-authorship example.

Example

Figure: H_1

- $H_1: V = \{A, B, C, D\}, \ F_1 = \{ABC, AD, CD\}$.
- $d =$
Degree Sequence of a Hypergraph

- \(\mathbf{d} = (d_1, d_2, \ldots, d_n) \): the degree sequence of a hypergraph.
- \(d_i \): number of hyperedges of \(H \) containing vertex \(i \).
- Recall our co-authorship example.

Example

\[
H_1 : V = \{ A, B, C, D \}, \quad F_1 = \{ ABC, AD, CD \}.
\]

\[
\mathbf{d} = (2, 1, 2, 2).
\]

Figure: \(H_1 \)
Three variants of the β-model for hypergraphs

We define three models, depending on the type of hypergraph we would like to model:

- **k-uniform hypergraph β-model**
 - All hyperedges in H are of size k.
 - $k = 2$ gives the β-model for graphs.

- **Layered hypergraph β-model**
 - Allow an individual a different propensity for participating in different size group interactions.
 - Each vertex is associated with r parameters $\beta_i^{(k)}$, one for integer k such that size-k edges are allowed in the model.

- **General hypergraph β-model**
 - One parameter β_i for each vertex $i \in [n]$: this parameter governs the propensity of node i to participate in edges of all sizes.
k-uniform hypergraph β-model

Model parameters: $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$.

Probability of edge

For a random hypergraph H drawn from this distribution:

\[
P(\text{edge } (i_1i_2\ldots i_k) \text{ in } H) = p_{i_1,i_2,...,i_k} = \frac{e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}{1 + e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}
\]
k-uniform hypergraph β-model

Model parameters: $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$.

Probability of edge

For a random hypergraph H drawn from this distribution:

$$P(\text{edge } (i_1, i_2, \ldots, i_k) \text{ in } H) = p_{i_1, i_2, \ldots, i_k} = \frac{e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}{1 + e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}.$$

Probability of hypergraph

$$P(H) = \exp \left\{ \sum_{i} \beta_i d_i - \psi(\beta) \right\},$$

$$\psi(\beta) = \sum_{s \in \binom{[n]}{k}} \log(1 + e^{\sum_{j \in f} \beta_j}),$$ normalizing constant.
k-uniform hypergraph β-model

Model parameters: $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$.

Probability of edge

For a random hypergraph H drawn from this distribution:

$$P(\text{edge } (i_1i_2 \ldots i_k) \text{ in } H) = p_{i_1,i_2,\ldots,i_k} = \frac{e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}{1 + e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}.$$

Probability of hypergraph

$$P(H) = \exp \left\{ \sum \beta_i d_i - \psi(\beta) \right\},$$

where

$$\psi(\beta) = \sum_{s \in \binom{[n]}{k}} \log(1 + e^{\sum_{s \in f} \beta_j}),$$

is the normalizing constant.
Maximum likelihood equations

- The log-likelihood function is strictly concave.
- $\hat{\beta}$: maximum likelihood estimator (MLE):
 \[
 \frac{\partial}{\partial \hat{\beta}_i} \psi(\hat{\beta}) = d_i. \]

ML Equations

The MLE $\hat{\beta}$ must satisfy the n equations:

\[
d_i = \sum_{s \in \binom{[n] \setminus \{i\}}{k-1}} \frac{e^{\hat{\beta}_i + \sum_{j \in s} \hat{\beta}_j}}{1 + e^{\hat{\beta}_i + \sum_{j \in s} \hat{\beta}_j}}. \quad (1)
\]
Layered hypergraph β-model

Model parameters: for $2 \leq k \leq r$: $\beta^{(k)} = (\beta_{1}^{(k)}, \beta_{2}^{(k)}, \ldots, \beta_{n}^{(k)})$.

Given a random hypergraph H drawn from this distribution:

- $P(\text{edge } (i_1 \ldots i_k) \text{ in } H) = p_{i_1, i_2, \ldots, i_k} = \frac{e^{\beta_{i_1}^{(k)} + \beta_{i_2}^{(k)} + \ldots + \beta_{i_k}^{(k)}}}{1 + e^{\beta_{i_1}^{(k)} + \beta_{i_2}^{(k)} + \ldots + \beta_{i_k}^{(k)}}}$.

- $P(H) = \exp \left\{ \sum_{k} \sum_{i} \beta_{i}^{(k)} d_{i}^{(k)} - \psi(\beta) \right\}$, with the normalizing constant
 $\psi(\beta) = \sum_{k} \sum_{f \in ([n]^{k})} \log(1 + e^{\sum_{j \in f} \beta_{j}^{(k)}})$.
Layered hypergraph β-model

Model parameters: for $2 \leq k \leq r$: $\beta^{(k)} = (\beta_1^{(k)}, \beta_2^{(k)}, \ldots \beta_n^{(k)})$.

Given a random hypergraph H drawn from this distribution:

- $P(\text{edge } (i_1i_2\ldots i_k) \text{ in } H) = p_{i_1, i_2, \ldots, i_k} = \frac{e^{\beta_{i_1}^{(k)} + \beta_{i_2}^{(k)} + \ldots + \beta_{i_k}^{(k)}}}{1 + e^{\beta_{i_1}^{(k)} + \beta_{i_2}^{(k)} + \ldots + \beta_{i_k}^{(k)}}}$.

- $P(H) = \exp \left\{ \sum_k \sum_i \beta_i^{(k)} d_i^{(k)} - \psi(\beta) \right\}$, with the normalizing constant $\psi(\beta) = \sum_k \sum_{f \in (\mathbb{N})_k} \log(1 + e^{\sum_j \beta_j^{(k)}})$.

ML Equations

The MLE $\hat{\beta}$ must satisfy the $n \times (r - 1)$ equations:

$$d_i^{(k)} = \sum_{s \in \left(\mathbb{N}_{k-1}\right) \setminus \{i\}} \frac{e^{\beta_s^{(k)}}}{1 + e^{\beta_s^{(k)} + \sum_j \hat{\beta}_j^{(k)}}}$$

(2)
General hypergraph β-model

Model parameters: $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$.

Given a hypergraph H drawn from this distribution:

- $P(\text{edge } e = i_1i_2\ldots i_k \text{ appearing in } H) =$
 \[p_{i_1, i_2, \ldots, i_k} = \frac{e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}{1 + e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}. \]

- $P(H) = \exp\{\sum_i \beta_i d_i - \psi(\beta)\}$, with the normalizing constant $\psi(\beta) = \sum_k \sum_{f \in \binom{[n]}{k}} \log(1 + e^{\sum_{j \in f} \beta_j}).$
General hypergraph β-model

Model parameters: $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$.

Given a hypergraph H drawn from this distribution:

- $P(\text{edge } e = i_1 i_2 \ldots i_k \text{ appearing in } H) = \frac{e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}{1 + e^{\beta_{i_1} + \beta_{i_2} + \ldots + \beta_{i_k}}}$

- $P(H) = \exp \{ \sum_i \beta_i d_i - \psi(\beta) \}$, with the normalizing constant $\psi(\beta) = \sum_k \sum_{f \in [n] \atop \{i\}} \log(1 + e^{\sum_{j \in f} \beta_j})$.

ML Equations

The MLE $\hat{\beta}$ must satisfy the n equations:

$$d_i = \sum_k \sum_{s \in [n] \setminus \{i\}}^{k-1} \frac{e^{\hat{\beta}_i + \sum_{j \in s} \hat{\beta}_j}}{1 + e^{\hat{\beta}_i + \sum_{j \in s} \hat{\beta}_j}}$$
Fixed Point Algorithms

k-uniform variant

Given an observed hypergraph H with degree, for $x \in \mathbb{R}^n$ define $\varphi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ with ith coordinate:

$$
\varphi_i(x) = \log d_i - \log \sum_{s \in ([n] \setminus \{i\}) \atop |s| = k-1} \left(e^{-\sum_{j \in s} x_j} + e^{x_i} \right)^{-1}
$$

- Suppose that the ML equations (1) have unique solution $\hat{\beta}$.
- Then $\hat{\beta}$ is a fixed point of the function φ.
Fixed Point Algorithms

k-uniform variant

Given an observed hypergraph H with degree, for $x \in \mathbb{R}^n$ define $\varphi : \mathbb{R}^n \rightarrow \mathbb{R}^n$ with ith coordinate:

$$
\varphi_i(x) = \log d_i - \log \sum_{s \in ([n] \setminus \{i\}) \atop k-1} \left(e^{-\sum_{j \in s} x_j} + e^{x_i} \right)^{-1}
$$

Suppose that the ML equations (1) have unique solution $\hat{\beta}$.
Then $\hat{\beta}$ is a fixed point of the function φ.

Algorithm

Initialize $x_0 \in \mathbb{R}^n$.

for $\ell = 1, 2, 3, \ldots$

$$
x_{\ell+1} = \varphi(x_\ell)
$$

Theorem

If the ML equations have a unique solution $\hat{\beta}$, then the sequence $\{x_\ell\}$ converges to $\hat{\beta}$.
Fixed Point Algorithms

The fixed point algorithm, with altered φ function, works for the other two models as well:

Layered variant

There are r functions $\varphi : \mathbb{R}^n \to \mathbb{R}^n$, one for each relevant edge size k.

$$\varphi_i^{(k)}(x) = \log d_i^{(k)} - \log \sum_{s \in \binom{[n]\setminus\{i\}}{k-1}} \left(e^{-\sum_{j \in s} x_j + e^{x_i}} \right)^{-1}$$

General Variant

For the general case, there is a single altered function φ where the second term includes more summands.

$$\varphi_i(x) = \log d_i - \log \sum_k \sum_{s \in \binom{[n]\setminus\{i\}}{k-1}} \left(e^{-\sum_{j \in s} x_j + e^{x_i}} \right)^{-1}$$
Sanity Check

- Simulate a hypergraph $H = (V, F)$ drawn from the beta model for 3-uniform hypergraphs on 10 vertices.

$\beta = (-5.05, -0.57, 2.87, 4.85, 1.98, -6.69, -3.95, 5.97, -6.61, -4.24)$.

- Draw a bunch of hypergraphs from this model; mean sufficient statistics vector:

$\bar{d} = (6.28, 10.70, 17.59, 20.81, 16.55, 4.41, 7.47, 23.02, 4.50, 7.17)$

- Average simulated edge density = 0.33.
Sanity Check

- Simulate a hypergraph $H = (V, F)$ drawn from the beta model for 3-uniform hypergraphs on 10 vertices.

$$\beta = (-5.05, -0.57, 2.87, 4.85, 1.98, -6.69, -3.95, 5.97, -6.61, -4.24).$$

- Draw a bunch of hypergraphs from this model; mean sufficient statistics vector:

$$\bar{d} = (6.28, 10.70, 17.59, 20.81, 16.55, 4.41, 7.47, 23.02, 4.50, 7.17)$$

- Average simulated edge density = 0.33.

- Fixed point algorithm using \bar{d} as the sufficient statistic decides that MLE exists.

$$\hat{\beta} = (-4.94, -0.58, 2.81, 4.76, 1.94, -6.55, -3.86, 5.86, -6.48, -4.15).$$
Sanity Check

- Simulate a hypergraph $H = (V, F)$ drawn from the beta model for 3-uniform hypergraphs on 10 vertices.

 $$\beta = (-5.05, -0.57, 2.87, 4.85, 1.98, -6.69, -3.95, 5.97, -6.61, -4.24).$$

- Draw a bunch of hypergraphs from this model; mean sufficient statistics vector:

 $$\bar{d} = (6.28, 10.70, 17.59, 20.81, 16.55, 4.41, 7.47, 23.02, 4.50, 7.17)$$

- Average simulated edge density = 0.33.

- Fixed point algorithm using \bar{d} as the sufficient statistic decides that MLE exists.

 $$\hat{\beta} = (-4.94, -0.58, 2.81, 4.76, 1.94, -6.55, -3.86, 5.86, -6.48, -4.15).$$

- $\|\beta - \hat{\beta}\|_{\infty} = 0.14.$
MLE existence simulations

<table>
<thead>
<tr>
<th>#edges</th>
<th>Degree Sequence</th>
<th>Conv?</th>
<th>#steps</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>(34, 29, 31, 31, 29, 31, 31, 28, 30, 26)</td>
<td>Yes</td>
<td>120</td>
<td>n/a</td>
</tr>
<tr>
<td>100</td>
<td>(30, 32, 30, 29, 27, 31, 31, 31, 31, 32)</td>
<td>Yes</td>
<td>66</td>
<td>n/a</td>
</tr>
<tr>
<td>100</td>
<td>(31, 30, 27, 29, 32, 30, 32, 30, 28, 31)</td>
<td>Yes</td>
<td>65</td>
<td>n/a</td>
</tr>
<tr>
<td>80</td>
<td>(28, 26, 20, 23, 30, 22, 20, 21, 28, 22)</td>
<td>Yes</td>
<td>54</td>
<td>n/a</td>
</tr>
<tr>
<td>60</td>
<td>(22, 18, 15, 17, 22, 17, 17, 16, 18, 18)</td>
<td>Yes</td>
<td>22</td>
<td>n/a</td>
</tr>
<tr>
<td>40</td>
<td>(16, 14, 11, 12, 14, 15, 9, 11, 7, 11)</td>
<td>Yes</td>
<td>53</td>
<td>n/a</td>
</tr>
<tr>
<td>40</td>
<td>(13, 9, 13, 16, 16, 14, 14, 10, 7, 8)</td>
<td>Yes</td>
<td>38</td>
<td>n/a</td>
</tr>
<tr>
<td>40</td>
<td>(6, 16, 16, 13, 13 ,13, 13, 9, 12, 9)</td>
<td>Yes</td>
<td>41</td>
<td>n/a</td>
</tr>
<tr>
<td>30</td>
<td>(9, 9, 12, 7, 7, 11, 9, 8, 8, 10)</td>
<td>No</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>(10, 13, 8, 8, 9, 12, 8, 7, 7, 8)</td>
<td>No</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>(10, 11, 9, 11, 10, 10, 7, 4, 11, 7)</td>
<td>No</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>(5, 10, 11, 9, 11, 9, 12, 5, 14, 4)</td>
<td>Yes</td>
<td>100</td>
<td>n/a</td>
</tr>
<tr>
<td>30</td>
<td>(8, 9, 14, 7, 9, 12, 7, 8, 6, 10)</td>
<td>No</td>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>(10, 8, 12, 12, 8, 10, 9, 8, 6, 7)</td>
<td>No</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>(11, 5, 5, 2, 7, 8, 5, 5, 8, 4)</td>
<td>No</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>(6, 7, 7, 8, 9, 7, 2, 4, 3, 7)</td>
<td>No</td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>(10, 5, 7, 6, 5, 4, 6, 5, 7, 5)</td>
<td>No</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>(7, 5, 9, 6, 7, 7, 6, 4, 5, 4)</td>
<td>No</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>(5, 5, 6, 5, 4, 6, 6, 3, 4, 1)</td>
<td>No</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>(5, 3, 3, 7, 5, 5, 4, 3, 2, 8)</td>
<td>No</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>(6, 5, 6, 5, 5, 3, 2, 4, 3, 6)</td>
<td>No</td>
<td>300</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>(7, 4, 5, 4, 7, 5, 6, 1, 3, 3)</td>
<td>No</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>(4, 2, 4, 2, 3, 4, 3, 1, 3, 4)</td>
<td>No</td>
<td>1000</td>
<td>4</td>
</tr>
</tbody>
</table>

Table: Convergence of Fixed Point Algorithm for 3-uniform hypergraphs on 10 vertices. Computation time: under a second.

Despina Stasi (IIT)
MLE existence simulations

<table>
<thead>
<tr>
<th>#edges</th>
<th>Degree Sequence</th>
<th>Conv?</th>
<th>#steps</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>(152, 157, 150, 142, 150, 153, 149, 152, 150, 146, 151, 152, 151, 153, 144, 151, 157, 154, 143, 143)</td>
<td>Yes</td>
<td>74</td>
<td>n/a</td>
</tr>
<tr>
<td>900</td>
<td>(143, 130, 136, 129, 143, 144, 135, 136, 137, 130, 134, 141, 143, 133, 132, 133, 135, 132, 127, 127)</td>
<td>Yes</td>
<td>41</td>
<td>n/a</td>
</tr>
<tr>
<td>800</td>
<td>(116, 114, 127, 118, 125, 128, 123, 118, 117, 114, 126, 118, 126, 122, 109, 126, 119, 115, 113, 126)</td>
<td>Yes</td>
<td>25</td>
<td>n/a</td>
</tr>
<tr>
<td>600</td>
<td>(82, 87, 94, 95, 99, 93, 83, 78, 87, 90, 95, 81, 86, 93, 96, 98, 88, 88, 95, 92)</td>
<td>Yes</td>
<td>16</td>
<td>n/a</td>
</tr>
<tr>
<td>600</td>
<td>(88, 86, 81, 82, 87, 84, 95, 108, 100, 91, 89, 98, 86, 92, 85, 86, 90, 94, 90, 88)</td>
<td>Yes</td>
<td>19</td>
<td>n/a</td>
</tr>
<tr>
<td>500</td>
<td>(72, 79, 69, 67, 80, 77, 77, 76, 80, 79, 74, 72, 85, 70, 77, 82, 76, 65, 75, 68)</td>
<td>Yes</td>
<td>20</td>
<td>n/a</td>
</tr>
<tr>
<td>400</td>
<td>(61, 65, 69, 51, 56, 63, 58, 50, 64, 62, 57, 63, 53, 63, 61, 59, 58, 63, 65, 59)</td>
<td>Yes</td>
<td>112</td>
<td>n/a</td>
</tr>
<tr>
<td>300</td>
<td>(35, 56, 43, 47, 49, 52, 51, 42, 38, 43, 40, 41, 43, 37, 47, 55, 49, 42, 48, 42)</td>
<td>No</td>
<td>55</td>
<td>2</td>
</tr>
<tr>
<td>300</td>
<td>(50, 45, 57, 38, 48, 49, 53, 41, 44, 50, 49, 40, 48, 44, 38, 41, 39, 39, 49, 38)</td>
<td>No</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>300</td>
<td>(47, 45, 47, 32, 37, 52, 51, 49, 38, 44, 41, 42, 51, 42, 49, 42, 46, 48, 52)</td>
<td>No</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>250</td>
<td>(40, 39, 40, 39, 48, 42, 37, 36, 31, 39, 36, 35, 33, 42, 31, 42, 31, 34, 39, 36)</td>
<td>No</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>200</td>
<td>(34, 36, 28, 31, 29, 28, 30, 39, 21, 37, 39, 24, 29, 30, 31, 21, 36, 28, 22)</td>
<td>No</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>150</td>
<td>(25, 17, 24, 26, 19, 22, 23, 25, 17, 18, 23, 22, 19, 15, 24, 21, 26, 31, 22, 31)</td>
<td>No</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>(15, 14, 16, 11, 16, 15, 17, 19, 18, 15, 19, 13, 16 ,18 ,11 ,20 ,19 ,17 ,7 ,4)</td>
<td>No</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>90</td>
<td>(13, 15, 19, 13, 18, 20, 18, 17, 10, 10 ,13 ,16 ,11 ,7 ,7, 11,10,15,12,15)</td>
<td>No</td>
<td>120</td>
<td>4</td>
</tr>
<tr>
<td>80</td>
<td>(9,14, 14, 21, 15, 17, 18, 11, 6, 13,11,10,10,15,14,9,14,8,12,9)</td>
<td>No</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>70</td>
<td>(14, 11, 14, 9, 13, 15, 9, 12, 13, 12, 10, 10, 6, 11, 7, 8, 9, 11, 9, 7)</td>
<td>No</td>
<td>200</td>
<td>8</td>
</tr>
<tr>
<td>60</td>
<td>(9, 13, 9, 4, 8, 13, 8, 7, 12, 12, 12, 8, 8, 9, 9, 8, 13, 8, 9, 4)</td>
<td>No</td>
<td>3401</td>
<td>8</td>
</tr>
<tr>
<td>50</td>
<td>(9, 9, 8, 7, 5, 7, 9, 10, 5, 11, 14, 8, 6, 8, 5, 12, 5, 3, 4)</td>
<td>No</td>
<td>348</td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>(12, 7, 7, 7, 4, 5, 9, 8, 4, 6, 5, 6, 7, 9, 5, 4, 1, 1)</td>
<td>No</td>
<td>182</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>(8, 4, 11, 2, 8, 6, 4, 2, 5, 4, 3, 2, 6, 5, 5, 3, 3, 3)</td>
<td>No</td>
<td>145</td>
<td>8</td>
</tr>
</tbody>
</table>

Table: Convergence of Fixed Point Algorithm for 3-uniform hypergraphs on 20 vertices. Computation time: under 5 secs.
Convergence of Fixed Point Algorithm for general hypergraphs with size 2 and 3 hyperedges on 20 vertices.

<table>
<thead>
<tr>
<th># edges</th>
<th>Degree Sequence</th>
<th>Conv?</th>
<th>#steps</th>
<th>User Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>(184,185,186,187,189,186,183,189,186,185,185,188,185,186,185,187,190,184,180)</td>
<td>Yes</td>
<td>976</td>
<td>44.666</td>
</tr>
<tr>
<td>1100</td>
<td>(161,161,154,159,155,162,156,155,160,154,152,150,153,161,155,162,154,156,161,158)</td>
<td>Yes</td>
<td>40</td>
<td>1.838</td>
</tr>
<tr>
<td>900</td>
<td>(138,119,141,114,135,123,131,123,115,143,123,126,129,122,135,128,130,124,135,134)</td>
<td>Yes</td>
<td>28</td>
<td>1.229</td>
</tr>
<tr>
<td>900</td>
<td>(127,116,117,120,140,131,124,130,125,136,133,137,122,141,126,128,123,128,120,138)</td>
<td>Yes</td>
<td>26</td>
<td>1.206</td>
</tr>
<tr>
<td>800</td>
<td>(114,130,114,113,114,107,104,120,115,112,119,113,125,119,107,111,121,113,112,103)</td>
<td>Yes</td>
<td>22</td>
<td>1.058</td>
</tr>
<tr>
<td>700</td>
<td>(96,107,111,92,95,106,103,105,105,97,99,102,94,97,104,93,99,96,98,97)</td>
<td>Yes</td>
<td>16</td>
<td>0.770</td>
</tr>
<tr>
<td>600</td>
<td>(81,91,93,84,88,88,69,85,85,89,90,75,89,90,77,84,94,91,84,85)</td>
<td>Yes</td>
<td>15</td>
<td>0.717</td>
</tr>
<tr>
<td>500</td>
<td>(75,67,82,66,79,81,75,71,67,75,64,70,69,67,65,66,62,65,79,72)</td>
<td>Yes</td>
<td>10</td>
<td>0.543</td>
</tr>
<tr>
<td>400</td>
<td>(52,66,54,62,61,66,53,47,52,61,52,53,48,64,54,73,56,53,59,58)</td>
<td>Yes</td>
<td>614</td>
<td>30.431</td>
</tr>
<tr>
<td>300</td>
<td>(44,41,37,46,56,29,52,38,43,40,42,52,38,40,52,41,47,43,35)</td>
<td>No</td>
<td>50</td>
<td>2.350</td>
</tr>
<tr>
<td>300</td>
<td>(47,45,45,58,39,45,37,50,45,47,39,46,33,38,50,39,46,40,45,34)</td>
<td>No</td>
<td>100</td>
<td>5.693</td>
</tr>
<tr>
<td>200</td>
<td>(27,35,28,29,29,16,32,34,30,40,25,30,25,26,31,36,27,19,19,28)</td>
<td>No</td>
<td>51</td>
<td>2.379</td>
</tr>
<tr>
<td>100</td>
<td>(21,20,14,10,16,13,12,15,14,19,17,23,13,10,12,11,13,17, 8, 9)</td>
<td>No</td>
<td>223</td>
<td>9.625</td>
</tr>
<tr>
<td>50</td>
<td>(6,5,12,3,7,5,4,11,7,8,4,7,7,12,9,7,8,5,10, 6)</td>
<td>No</td>
<td>657</td>
<td>28.891</td>
</tr>
</tbody>
</table>

Table: Convergence of Fixed Point Algorithm for general hypergraphs with size 2 and 3 hyperedges on 20 vertices.
Summary and Further Discussion

- New statistical model for higher-order interactions.
- MLE estimation can be done using IPS or fixed point algorithms: the latter is fast for smaller ks, much slower for larger ones.
- Computations: as in the β-model for graphs, the density of the hypergraph influences existence of the MLE.
- Connections to important open problems in combinatorics:
 - Polytope of degree sequences of hypergraphs
 - Characterizations of graphical degree sequences for hypergraphs.
 - Edge-swaps (Markov bases).
Questions?

Thank you for your attention!