Power Control for a Polymer Electrolyte Membrane Fuel Cell

Donald J. Chmielewski
Kevin Lauzze

Department of Chemical and Environmental Engineering

Presented at the Annual Meeting of the AIChE: November 2005
Outline

➢ PEMFC Model
 • Mat. & Energy Balances and Electrochemistry
 • Operating Characteristics

➢ Controller Design
 • Power Set-Point Tracking
 • Temperature / Humidity Regulation
 • Oxygen Regulation
What is a Fuel Cell?

Answer:

A device that converts fuel directly into electrical power
Polymer Electrolyte Membrane Fuel Cell (PEMFC)

Generated power due to enthalpy released by the reaction:

\[H_2 + \frac{1}{2} O_2 \rightarrow H_2O \]

\(\Delta H \sim 58 \text{ kcal/mole } H_2 \)
Dynamic Model of PEMFC

- Parameters based on 50 kW scale.
- Pure hydrogen feed
- Air cooling is assumed.
Material Balances in the Cathode

\[V_{\text{cat}} \frac{dC_{H_2O}}{dt} = F_{\text{cat}}^{\text{in}} C_{H_2O}^{\text{in}} - F_{\text{cat}} C_{H_2O} + r_{H_2O} A_{\text{mem}} \]

\[V_{\text{cat}} \frac{dC_{O_2}}{dt} = F_{\text{cat}}^{\text{in}} C_{O_2}^{\text{in}} - F_{\text{cat}} C_{O_2} - \frac{1}{2} r_{H_2O} A_{\text{mem}} \]

\[V_{\text{cat}} \frac{dC_{N_2}}{dt} = F_{\text{cat}}^{\text{in}} C_{N_2}^{\text{in}} - F_{\text{cat}} C_{N_2} \]

\[F_{\text{cat}} C = F_{\text{cat}}^{\text{in}} C + \frac{1}{2} r_{H_2O} A_{\text{mem}} \]
Energy Balances

Cathode Chamber Gas

\[V_{cat} \frac{dT_{cat}}{dt} = F_{cat}^\text{in} T_{cat}^\text{in} - F_{cat} T_{cat} + \left(\frac{UA}{\rho C_p} \right)_\text{cat} (T_{sol} - T_{cat}) \]

Cooling Jacket Gas

\[V_{jac} \frac{dT_{cat}}{dt} = F_{jac}^\text{in} T_{jac}^\text{in} - F_{jac} T_{jac} + \left(\frac{UA}{\rho C_p} \right)_\text{jac} (T_{sol} - T_{jac}) \]

Solid Material

\[\left(\rho C_p \right)_\text{sol} V_{sol} \frac{dT_{sol}}{dt} = \left(UA \right)_\text{cat} (T_{cat} - T_{sol}) + \left(UA \right)_\text{jac} (T_{jac} - T_{sol}) + \left(UA \right)_\text{eff} (T_{amb} - T_{sol}) + Q_{gen} A_{mem} \]
Rates

Rate of Reaction:
(production of water per area of membrane)

\[r_{H_2O} = -\frac{j}{2F} \]

Heat Generation Rate:
(per area of membrane)

\[Q_{gen} = (\Delta H_{f,H_2O}) r_{H_2O} - P_e \]

Power Generation:
(electrical energy generation rate per area of membrane)

\[P_e = j E_{cell} \]
Current Density Depends on the Load

The fuel cell looks like a battery to the electrical world.

\[I = j \cdot A_{cell} \]
Changing the Reaction Rate

\[
E_{\text{load}} = E_o - R_{\text{int}} \cdot I
\]

\[
E_{\text{load}} = R_{\text{load}} \cdot I
\]

\[
r_{H_2O} = - \frac{I / A_{\text{mem}}}{n \cdot F}
\]
Electrochemistry

\[E_{\text{cell}} = E_{\text{ner}} - E_{\text{act}} - E_{\text{ohm}} - E_{\text{mt}} \]
Electrochemistry

\[E_{\text{cell}} = E_{\text{ner}} - E_{\text{act}} - E_{\text{ohm}} - E_{\text{mt}} \]

Nernst Potential:

\[E_{\text{ner}} = E_o + \frac{RT_{\text{sol}}}{2F} \ln \left(\frac{P_{H_2} P_{O_2}^{1/2}}{P_{H_2O}} \right) \]
Electrochemistry

\[E_{cell} = E_{ner} - E_{act} - E_{ohm} - E_{mt} \]

Ohmic Loss:

\[E_{ohm} = IR = jA_{mem} \left(\frac{t_{mem}}{A_{mem} \sigma} \right) \]

- \(\sigma \sim \) ionic conductivity of the membrane
- \(\sigma \) depends on humidification levels
Ohmic Resistance

Ionic conductivity, σ, increases with humidity.

$$RH = x_{H_2O} \frac{P}{P^{sat}(T)}$$

$x_{H_2O} = 0.35$
Partial PEMFC Polarization Curve

\[E_{cell} = E_{ner} - E_{act} - E_{ohm} - E_{mt} \]
PEMFC Polarization Curve

\[E_{\text{cell}} = E_{\text{net}} - E_{\text{act}} - E_{\text{ohm}} - E_{\text{mt}} \]
PEMFC Polarization Curve

\[E_{cell} = E_{net} - E_{act} - E_{ohm} - E_{mt} \]

Activation Loss:

\[E_{act} = \frac{1}{\alpha} \frac{RT_{sol}}{2F} \ln\left(\frac{j}{j_o} \right) \quad j_o = j_o^{o} \left(\frac{C_{O_2}^{(s)}}{C_{O_2}^{o}} \right)^{\gamma} \]

Mass Transfer Loss:

\[E_{mt} = -\frac{1}{2} \frac{RT_{sol}}{2F} \ln\left(\frac{C_{O_2}^{(s)}}{C_{O_2}^{o}} \right) \]
Surface Concentrations

Mass Transfer Rate:
(assuming \(O_2 \) is the rate limiting species)

\[
(1/2)r_{H_2O} = K(C^{(s)}_{O_2} - C_{O_2})
\]

Mass Transfer Coefficient:

\[
K = K_o \left(1 - e^{\left(\frac{RH - 1}{\psi}\right)}\right)
\]

• \(\psi \sim \) porosity coefficient
Flooding Resistance via the MTC

\[\psi = 0.25 \]
\[\psi = 0.075 \]
\[\psi = 0.025 \]
Efficient Operation

Ionic conductivity, σ, increases with humidity.

\[x_w = 0.35 \]
Outline

➢ PEMFC Model
 • Mat. & Energy Balances and Electrochemistry
 • Operating Characteristics

➢ Controller Design
 • Power Set-Point Tracking
 • Temperature / Humidity Regulation
 • Oxygen Regulation
Power Set-Point Tracking

Transportation Applications

![Car Image]

\[
P_e^{(sp)} \rightarrow \text{Power Controller} \rightarrow MV \rightarrow \text{PEMFC}
\]

\[P_e\]
Selecting the Power Output

![Graph showing the relationship between current density (mA/cm²), cell voltage (V), and power density (watts/cm²). The graph includes two curves: one representing cell voltage and the other representing power density. The curves are labeled as P_e and E_{cell}, respectively.](image-url)
Selecting the Power Output

![Graph showing current density vs. cell voltage and power density](image)

- Current Density (mA/cm\(^2\))
- Cell Voltage (V)
- Power Density (watts/cm\(^2\))

Equations:
- \(P_e \)
- \(E_{cell} \)
Selecting the Power Output

![Graph showing the relationship between current density and cell voltage and power density.](image)
Selecting the Power Output

![Graph showing the relationship between Current Density and Power Density]
Power Controller

\[j^{(sp)} \] \rightarrow \text{PI} \rightarrow E_{\text{cell}} \rightarrow \text{PEMFC} \rightarrow j \rightarrow P_e

\[P_e^{(sp)} \]

Graph:

- Cell Voltage (V) vs. Power Density (watts/cm2)
- Current Density (mA/cm2) vs. Cell Voltage (V)
- Power Density (watts/cm2) vs. Current Density (mA/cm2)
Power Controller
Power Controller

![Graph showing Power Density vs Time (seconds)]

- P_e
- $P_e^{(sp)}$

Power Density (watts/cm2)

Time (seconds)
Power Controller

![Graph showing the relationship between current density and cell voltage over time, and power density with current density.](graph.png)
Power Controller Flooding

![Graph showing the change in temperature and relative humidity over time. The graph plots temperature (Celsius) and relative humidity (%). The x-axis represents time in seconds, ranging from 0 to 25 seconds. The y-axis represents temperature, ranging from 64°C to 74°C, and relative humidity, ranging from 90% to 100%. The graph shows a decrease in temperature and an increase in relative humidity over time.]
Power Controller

- P_e (solid line)
- $P_e^{(sp)}$ (dotted line)

Power Density (watts/cm2) vs. Time (seconds)

- P_e: 0.18, 0.20, 0.22
- $P_e^{(sp)}$: 0.19, 0.20, 0.22
Power Controller Failure

![Graph showing current density and cell voltage over time](image)
Power Controller

![Graph showing power density over time]

- P_e (solid line)
- $P_e^{(sp)}$ (dotted line)

Power Density (watts/cm²)

Time (seconds)
Power Controller Failure
Power Controller Failure

![Graph showing Power Controller Failure](image)

- Current Density (mA/cm²)
- Cell Voltage (V)
- Power Density (watts/cm²)
- P_e
- E_{cell}
Temperature / RH Controller

Power Controller

PEMFC

$P_e^{(sp)}$ E_{cell} P_e, j

$T_{\text{cat}}^{(sp)}$ F_{jac}

T_{cat}

$RH^{(sp)}$

RH

Illinois Institute of Technology
Department of Chemical and Environmental Engineering
Temperature / RH Controller

- Power Controller
 - $P_e^{(sp)}$
 - E_{cell}
 - P_e, j

- PEMFC
 - F_{jac}

- Temperature / RH Controller
 - $T_{cat}^{(sp)}$
 - $R_{H}^{(sp)}$

- PI
 - T_{cat}

- RH
Temperature / RH Controller

\[P_e^{(sp)} \rightarrow \text{Power Controller} \rightarrow E_{cell} \rightarrow \text{PEMFC} \]

\[P_e, j \]

\[T_{cat}^{(sp)} \rightarrow \text{PI} \rightarrow F_{jac} \]

\[T_{cat} \]

\[RH^{(sp)} \rightarrow RH \]

\[RH \]
Temperature / RH Controller

Power Controller

E_{cell}

P_{e}

$P_{e,j}$

PI

F_{jac}

T_{cat}

$T_{cat}^{(sp)}$

$P_{e}^{(sp)}$

RH

T_{cat}

$RH^{(sp)}$

Cooling
Air In
Jacket
Exhaust

MEA

Solid Material

Current Collector

H$_2$

O$_2$

H_2O

N_2

Anode

H$_2$ In

Cathode

Air In

Cathode

Exhaust

H$_2$

H_2 In

Insulator

Jacket

Exhaust

Current Collector

E_{cell}
Temperature / RH Controller

![Graph showing the power density (watts/cm²) over time (seconds)].

- \(P_e \) (solid line)
- \(P_{(sp)} \) (dashed line)

- **Y-axis (Vertical):** Power Density (watts/cm²)
- **X-axis (Horizontal):** Time (seconds)
Temperature / RH Controller

![Graph showing temperature and relative humidity over time]

- Temperature (Celsius) vs. Time (seconds)
- Relative Humidity (%) vs. Time (seconds)
- Lines represent:
 - T_{cat}
 - $T_{\text{cat}}^{(sp)}$
 - RH

Illinois Institute of Technology
Department of Chemical and Environmental Engineering
Oxygen Controller

Power Controller

\(P_e^{(sp)} \)

\(E_{cell} \)

\(P_e, j \)

PEMFC

\(F_{jac} \)

\(RH, T_{cat} \)

RH Controller

\(x_{O_2} \)

\(x_{O_2}^{(sp)} \)

\(+ \)

PI

\(F_{cat} \)
Oxygen Controller

- **Power Controller**
 - $P_e^{(sp)}$
 - E_{cell}
 - P_e, j

- **PEMFC**
 - F_{jac}
 - RH, T_{cat}

- **RH Controller**
 - $RH^{(sp)}$

- **PI**
 - F_{cat}
 - $x_{O_2}^{(sp)}$

- **x_{O_2}**

Department of Chemical and Environmental Engineering
Illinois Institute of Technology
Oxygen Controller

\[
\begin{align*}
\text{Power Controller} & \quad P_e^{(sp)} \quad \rightarrow \quad E_{cell} \\
\text{PEMFC} & \quad F_{jac} \quad \rightarrow \quad RH^{(sp)} \\
\text{RH Controller} & \quad \leftarrow \quad RH, T_{cat} \\
\text{PI} & \quad \leftarrow \quad F_{cat} \\
\end{align*}
\]

\[
\begin{align*}
E_{cell} & \quad \rightarrow \quad F_{jac} \\
F_{cat} & \quad \rightarrow \quad RH^{(sp)} \\
\end{align*}
\]

\[
\begin{align*}
P_e^{(sp)} & \quad \rightarrow \quad E_{cell} \\
\end{align*}
\]

\[
\begin{align*}
x_{O_2}^{(sp)} & \quad \rightarrow \quad x_{O_2} \\
\end{align*}
\]
Oxygen Controller

![Graph showing the relationship between Power Density (watts/cm2) and Time (seconds). The graph includes two lines: one dotted line labeled $P_e^{(sp)}$ and one solid line labeled P_e. The x-axis represents time in seconds, ranging from 0 to 400, while the y-axis represents power density, ranging from 0 to 0.6.]
Oxygen Controller

![Graph showing the mole fraction of oxygen over time. The graph illustrates a decreasing trend with fluctuating oscillations.](image-url)
Oxygen Controller

Time (seconds)

Temperature (Celsius)

Relative Humidity (%)

0 100 200 300 400

40 50 60 70 80 90 100
Effective Operation

Definition of Efficiency:

\[\eta = \frac{E_{cell}}{E_{eq}} \]

where

\[E_{eq} = \frac{\Delta H_{f,H_2O}}{2F} \]
Available Power and Efficiency

Power Control

Efficiency (%)

Power Density (watts/cm2)

0.17 0.18 0.19 0.2 0.21 0.22

55 60 65 70 75

PEMFC

E_{cell}

P_e

$P_{(sp)}$

$P_{(sp)}$

PI

PI

Diagram showing the relationship between power density and efficiency with power control.
Available Power and Efficiency

Power & Humidity Control

Power Control
Available Power and Efficiency

Power, Humidity & Oxygen Control

Power Control

Power & Humidity Control
Acknowledgements

- **Students:**
 - Ayman Al-Qattan
 - Yongyou Hu
 - Janet Ruettiger

- **Collaborators:**
 - Said Al-Hallaj
 - J. Robert Selman
 - Vijay Ramani
 - Satish Parulekar
 - Jai Prakash

- **Funding:**
 - Argonne National Laboratory
 - Graduate College, IIT
 - Armour College of Engineering, IIT
 - Department of Chemical & Environmental Engineering, IIT