Massive Energy Storage Design for Renewable Electricity Generation Systems

Benjamin Omell and Donald J. Chmielewski
Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL
Outline

• Introduction and Objectives
• Case Study
• Method: Supervisory Control Scheme and Profit Control
• Case study Results
• Summary and Conclusions
Outline

• Introduction and Objectives
• Case Study
• Method: Supervisory Control Scheme and Profit Control
• Case study Results
• Summary and Conclusions
Power Management With Renewable Energy
Power Management With Renewable Energy

Power Produced \[\text{Equals}\] Power Consumed
Power Management With Renewable Energy

- Wind energy and other renewable sources are not dispatchable.

Power Produced \(\rightarrow \) Equals \(\rightarrow \) Power Consumed

Graph showing power production and consumption over time.
Wind Power Generation Comparison with Load Demand

[Graph showing comparison between renewable and load demand over 5 days.]

- **Renewable (MW)**: Variations range from 400 to 700 MW across 5 days.
- **Load (MW)**: Variations range from 1500 to 2500 MW across 5 days.
Wind Power Generation Comparison with Load Demand
Wind Power Generation Comparison with Load Demand

[Graph showing comparison of renewable power generation and load demand over 5 days.]

Renewable (MW) vs. Days

Load (MW) vs. Days
Power Management With Renewable Energy

Renewable + Dispatchable = Load
Power Management With Renewable Energy

Renewable + Dispatchable = Load

MW vs. Days

Illinois Institute of Technology
Department of Chemical and Biological Engineering
Solutions

Power Produced \[\text{Equals} \] Power Consumed

- Wind energy and other renewable sources are not dispatchable
Solutions

Power Produced \quad \text{Equals} \quad \text{Power Consumed}
Forms of Energy Storage

- Large Scale Battery
- Compressed Air
- Flow Batteries
- Flywheel
- Thermal Energy Storage
- Pumped Hydro-storage
Energy Storage Solution

Renewable + Dispatchable = Load
Energy Storage Solution

Renewable

Dispatchable

Load

Energy Storage
Objectives

• Implement supervisory control scheme to regulate power production
• Implement optimization scheme that sizes energy storage device
• Obtain both simultaneously
• Find globally optimal solution
Profit Control

Expected Dynamic Operating Region (EDOR)

Constraints

Backed-off Operating Point (BOP)

Optimal Steady-State Operating Point (OSSOP)
Outline

• Introduction and Objectives
• Case Study
• Method: Supervisory Control Scheme and Profit Control
• Case study Results
• Summary and Conclusions
Forms of Energy Storage

• Large Scale Battery
• Compressed Air
• Flow Batteries
• Flywheel
• Thermal Energy Storage
• Pumped Hydro-storage
Pumped-Hydro Storage

- Pumping water into a high reservoir from a lower one with excess electricity production
- Releasing the water to the lower reservoir and spinning a turbine, during peak demand and low renewable energy production

- Upsides
 - Massive energy storage with minimal cost

- Downsides
 - Economical implementation can be limited by geography
Examples of Pumped-Storage Hydro in U.S.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Production Capacity (MW)</th>
<th>Hrs of Available Discharge</th>
<th>GW-hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bath County (US, Va)</td>
<td>2700</td>
<td>11</td>
<td>29.7</td>
</tr>
<tr>
<td>Castaic (US,CA)</td>
<td>1566</td>
<td>10</td>
<td>15.66</td>
</tr>
<tr>
<td>Helms (US,CA)</td>
<td>1212</td>
<td>153</td>
<td>185.43</td>
</tr>
<tr>
<td>Northfield MT (US,MA)</td>
<td>1080</td>
<td>10</td>
<td>10.8</td>
</tr>
<tr>
<td>Ludington (US, MI)</td>
<td>1980</td>
<td>9</td>
<td>17.82</td>
</tr>
<tr>
<td>Blenheim-Gilboa (US,NY)</td>
<td>1200</td>
<td>12</td>
<td>14.4</td>
</tr>
<tr>
<td>Lewiston Niagra (US,NY)</td>
<td>2880</td>
<td>20</td>
<td>57.6</td>
</tr>
<tr>
<td>Bad Creek (US,SC)</td>
<td>1065</td>
<td>24</td>
<td>25.56</td>
</tr>
<tr>
<td>Racoon Mt (US,TN)</td>
<td>1900</td>
<td>21</td>
<td>39.9</td>
</tr>
<tr>
<td>Average</td>
<td>1731.4</td>
<td>30.0</td>
<td>44.1</td>
</tr>
</tbody>
</table>
Outline

• Introduction and Objectives
• Case Study
• **Method: Supervisory Control Scheme and Profit Control**
• Case study Results
• Summary and Conclusions
Control Scheme

\[
\begin{align*}
\dot{P}_C &= r_C \\
\dot{P}_T &= r_T \\
\dot{E}_S &= P_S \\
&= P_C + P_T + P_R - P_L
\end{align*}
\]
Control Scheme

\[
\dot{x} = Ax + Bu + Gw
\]

\[
z = Dx x + Du u
\]

- Disturbance:
 - Power Load \(P_L \)
 - Renewable Power \(P_R \)

- MV:
 - Rate of Coal \(r_T \)
 - Rate of Gas Turbine \(r_c \)

- Outputs:
 - Coal Power \(P_C \) (Performance Var.)
 - Gas Turbine Power \(P_T \) (Performance Var.)
 - Energy Stored \(E_s \) (Performance Var.)
Linear State Model

Controller Prospective

\[
\begin{aligned}
\dot{x} &= Ax + Bu + Gw \\
z &= D_x x + D_u u
\end{aligned}
\]
Profit Control

Constraints

Expected Dynamic Operating Region (EDOR)

Backed-off Operating Point (BOP)

Optimal Steady-State Operating Point (OSSOP)
System Constraints

- Power plants have limits of maximum and minimum production. Long start-up times if shut down
- Plants have limits to rate of changes in power production

<table>
<thead>
<tr>
<th>Coal Power Limitations</th>
<th>Turbine Power Limitations</th>
<th>Energy Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_c^{\text{min}} \leq P_c \leq P_c^{\text{max}}$</td>
<td>$P_T^{\text{min}} \leq P_T \leq P_T^{\text{max}}$</td>
<td>$0 \leq E_S \leq E_S^{\text{max}}$</td>
</tr>
<tr>
<td>$P_c^{\text{min}} = 0.8 \cdot P_c^{\text{max}}$</td>
<td>$P_T^{\text{min}} = 0.2 \cdot P_T^{\text{max}}$</td>
<td></td>
</tr>
<tr>
<td>$P_c^{\text{max}} = 1200$</td>
<td>$P_T^{\text{max}} = 1000$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coal Rate Change Limitations</th>
<th>Turbine Rate Change Limitations</th>
<th>Power Production Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_c^{\text{min}} \leq r_c \leq r_c^{\text{max}}$</td>
<td>$r_T^{\text{min}} \leq r_T \leq r_T^{\text{max}}$</td>
<td>$P_S^{\text{min}} \leq P_S \leq P_S^{\text{max}}$</td>
</tr>
<tr>
<td>$r_c^{\text{max}} = 0.05 \cdot P_c^{\text{max}}$</td>
<td>$r_T^{\text{max}} = 6 \cdot P_T^{\text{max}}$</td>
<td></td>
</tr>
</tbody>
</table>
Variable Constraints

Storage Size (MWhr) vs. Days
Variable Constraints
Variable Constraints

Days

Sorage Size (MWhr)

0 5 10 15 20 25 30 35 40
0 2000 4000 6000 8000 10000 12000 14000

Days

Sorage Size (MWhr)
Variable Constraints

![Graph showing variable constraints with storage size (MWhr) on the y-axis and days on the x-axis. The graph includes a red and a black line with horizontal dashed lines indicating constraints.]
Variable Constraints

\[E_S^{\text{min}} = 0 \]

\[E_S^{\text{max}} \]

\[P_S^{\text{max}} \]

\[P_S^{\text{min}} \]
Disturbance modeling

- A shaping filter is used to model the demand and renewable energy production from the wind generators.

Forcasted Data
Simulated Data
Problem Formulation

\[
\begin{align*}
\min_{X,Y} & \quad \beta_1 E_s^{\max} + \beta_2 P_s^{\max} \\
\xi_i & < \phi_i \Sigma z \phi_i \\
\sigma_i^2 & \leq \xi_i \\
0 & = Ax + Bu + Gw \\
z & = D_x x + D_u u \\
(A + BY) \Sigma x + \Sigma x (A + BY)^T + G \Sigma w G^T & < 0 \\
\begin{bmatrix}
\xi_i \\
(D_x X + D_u Y)^T \phi_i^T
\end{bmatrix} & \leq \begin{bmatrix}
X
\end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\alpha \sigma_C & < P_C^{\max} - P_C \\
\alpha \sigma_C & < P_C - 0.8 \cdot P_C^{\max} \\
\alpha \sigma_{rC} & < 0.05 \cdot P_C^{\max} - r_C \\
\alpha \sigma_{rC} & < 0.05 \cdot P_C^{\max} + r_C \\
\alpha \sigma_E & < E_S^{\max} - E_S \\
\alpha \sigma_E & < E_S \\
\alpha \sigma_T & < P_T^{\max} - P_T \\
\alpha \sigma_T & < P_T - 0.2 \cdot P_T^{\max} \\
\alpha \sigma_{rT} & < 6 \cdot P_T^{\max} - r_T \\
\alpha \sigma_{rT} & < 6 \cdot P_T^{\max} + r_T \\
\alpha \sigma_S & < P_S^{\max} + P_S \\
\alpha \sigma_S & < P_S^{\max} - P_S
\end{align*}
\]
Problem Formulation

\[
\begin{align*}
\min_{X,Y} & \quad \beta_1 E_s^{\max} + \beta_2 P_s^{\max} \\
\xi_i & < \phi_i \sum \phi_i \\
\sigma_i^2 & \leq \xi_i \\
0 &= Ax + Bu + Gw \\
z &= D_x x + D_u u
\end{align*}
\]
Control Scheme

\[
\begin{align*}
\dot{P}_C &= r_C \\
\dot{P}_T &= r_T \\
\dot{E}_S &= P_S \\
&= P_C + P_T + P_R - P_L
\end{align*}
\]
Problem Formulation

\[
\min_{X,Y} \beta_1 E_s^{\text{max}} + \beta_2 P_s^{\text{max}} \\
\xi_i < \phi_i \sum_z \phi_i \\
\sigma_i^2 \leq \xi_i \\
0 = Ax + Bu + Gw \\
z = D_x x + D_u u \\
\]

\[
(A + BY)\Sigma_x + \Sigma_x (A + BY)^T + G\Sigma_w G^T < 0 \\
\left[\begin{array}{c} \xi_i \\ \phi_i (D_x X + D_u Y) \\ (D_x X + D_u Y)^T \phi_i^T \\ X \end{array} \right]
\]

\[
\alpha \sigma_C < P_C^{\text{max}} - P_C \\
\alpha \sigma_C < P_C - 0.8 \cdot P_C^{\text{max}} \\
\alpha \sigma_{rC} < 0.05 \cdot P_C^{\text{max}} - r_C \\
\alpha \sigma_{rC} < 0.05 \cdot P_C^{\text{max}} + r_C \\
\alpha \sigma_E < E_S^{\text{max}} - E_S \\
\alpha \sigma_E < E_S \\
\]

\[
\alpha \sigma_T < P_T^{\text{max}} - P_T \\
\alpha \sigma_T < P_T - 0.2 \cdot P_T^{\text{max}} \\
\alpha \sigma_{rT} < 6 \cdot P_T^{\text{max}} - r_T \\
\alpha \sigma_{rT} < 6 \cdot P_T^{\text{max}} + r_T \\
\alpha \sigma_S < P_S^{\text{max}} + P_S \\
\alpha \sigma_S < P_S^{\text{max}} - P_S \\
\]
Problem Formulation

\[
\begin{align*}
\min_{X,Y} & \quad \beta_1 E_s^{\max} + \beta_2 P_s^{\max} \\
\xi_i & < \phi_i \Sigma \phi_i \\
\sigma_i^2 & \leq \xi_i \\
0 & = Ax + Bu + Gw \\
z & = D_x x + D_u u
\end{align*}
\]

\[
(A + BY)\Sigma_x + \Sigma_x (A + BY)^T + G\Sigma_w G^T < 0
\]

\[
\left[
\begin{array}{c}
\xi_i \\
\phi_i (D_x X + D_u Y) \\
(D_x X + D_u Y)^T \phi_i^T
\end{array}
\right] X
\]

\[
\begin{align*}
\alpha \sigma_C & < P_C^{\max} - P_C \\
\alpha \sigma_C & < P_C - 0.8 \cdot P_C^{\max} \\
\alpha \sigma_{rC} & < 0.05 \cdot P_C^{\max} - r_C \\
\alpha \sigma_{rC} & < 0.05 \cdot P_C^{\max} + r_C \\
\alpha \sigma_E & < E_S^{\max} - E_S \\
\alpha \sigma_E & < E_S
\end{align*}
\]

\[
\begin{align*}
\alpha \sigma_T & < P_T^{\max} - P_T \\
\alpha \sigma_T & < P_T - 0.2 \cdot P_T^{\max} \\
\alpha \sigma_{rT} & < 6 \cdot P_T^{\max} - r_T \\
\alpha \sigma_{rT} & < 6 \cdot P_T^{\max} + r_T \\
\alpha \sigma_S & < P_S^{\max} + P_S \\
\alpha \sigma_S & < P_S^{\max} - P_S
\end{align*}
\]
Problem Formulation

\[
\min_{X,Y} \beta_1 E_s^{\text{max}} + \beta_2 P_s^{\text{max}}
\]

\[
\xi_i < \phi_i \Sigma \phi_i
\]

\[
\sigma_i^2 \leq \xi_i
\]

\[
0 = Ax + Bu + Gw
\]

\[
z = D_x x + D_u u
\]

\[
(A + BY) \Sigma_x + \Sigma_x (A + BY)^T + G \Sigma w G^T < 0
\]

\[
\begin{bmatrix}
\xi_i \\
\phi_i (D_x X + D_u Y) \\
(D_x X + D_u Y)^T \phi_i^T
\end{bmatrix}
\]

\[
\begin{align*}
\alpha \sigma_C &< P_C^{\text{max}} - P_C \\
\alpha \sigma_C &< P_C - 0.8 \cdot P_C^{\text{max}} \\
\alpha \sigma_{rC} &< 0.05 \cdot P_C^{\text{max}} - r_C \\
\alpha \sigma_{rC} &< 0.05 \cdot P_C^{\text{max}} + r_C \\
\alpha \sigma_E &< E_S^{\text{max}} - E_S \\
\alpha \sigma_E &< E_S
\end{align*}
\]
Reverse-Convex Constraints

- Global solution obtained using branch and bound scheme
Problem Formulation

\[
\min_{X,Y} \beta_1 E_s^\text{max} + \beta_2 P_s^\text{max} \\
(\begin{bmatrix}
\xi_i \\
\phi_i \\
\xi_i^2 \\
0 \\
z = D_x x + D_u u
\end{bmatrix}
\begin{bmatrix}
\alpha \sigma_C < P_C^\text{max} - P_C \\
\alpha \sigma_C < P_C - 0.8 \cdot P_C^\text{max} \\
\alpha \sigma_{rC} < 0.05 \cdot P_C^\text{max} - r_C \\
\alpha \sigma_{rC} < 0.05 \cdot P_C^\text{max} + r_C \\
\alpha \sigma_E < E_s^\text{max} - E_S \\
\alpha \sigma_E < E_S
\end{bmatrix}
\begin{bmatrix}
\phi_i (D_x X + D_u Y) \\
(D_x X + D_u Y)^T \phi_i^T \\
X
\end{bmatrix}
\leq 0
\]

\[
(A + BY) \Sigma_x + \Sigma_x (A + BY)^T + G \Sigma_w G^T < 0
\]
Outline

• Introduction
• Case Study
• Method: Supervisory Control Scheme and Profit Control
• Results
• Summary and Conclusions
Cases

- Case 1: 40% Coal, 40% Gas Turbine, 20% Renewable
- Case 2: 10% Coal, 40% Gas Turbine, 50% Renewable
- Case 3: 75% Coal, 5% Gas Turbine, 20% Renewable

Power Storage Cost (β_1) 55/kWh
Power Rating Cost (β_2) 1300/kW
Case 1

Dispatchable Power

Days

MW

Coal (MW/hr)

Gas Turbine (MW/hr)

Dispatchable Power Rates

Days

MW

Coal (MW/hr)

Days

Gas Turbine (MW/hr)
Results Case 1

Gas Turbine

Coal

- Rate (MW/hr) vs. Power (MW) graphs for Gas Turbine and Coal are shown.

- The Gas Turbine graph is a straight line at zero rate for the given power range.

- The Coal graph is an ellipse indicating a more complex relationship.

- The plots demonstrate the efficiency and output characteristics of each fuel type during the specified range of rates and power levels.
Storage Result

Storage Power

Days

0 20 40 60 80 100 120 140 160

MW

-2000 -1000 0 1000 2000

Storage Size

Days

0 20 40 60 80 100 120 140 160

GWhr

0 5 10 15 20

Days
Results Case 1

Gas Turbine

Coal

Storage
Cases

• Case 1: 40% Coal, 40% Gas Turbine, 20% Renewable
• Case 2: 10% Coal, 40% Gas Turbine, 50% Renewable
• Case 3: 75% Coal, 5% Gas Turbine, 20% Renewable

Power Storage Cost (β_1) $55/kWh
Power Rating Cost (β_2) $1300/kW
Results Case 2

Gas Turbine

Coal

Storage

Rate (MW/hr)

Power (MW)

Energy (MWh)

Illinois Institute of Technology
Department of Chemical and Biological Engineering
Cases

- Case 1: 40% Coal, 40% Gas Turbine, 20% Renewable
- Case 2: 10% Coal, 40% Gas Turbine, 50% Renewable
- **Case 3:** 75% Coal, 5% Gas Turbine, 20% Renewable

Power Storage Cost (β_1) $55 /\text{kWh}$
Power Rating Cost (β_2) $1300 /\text{kW}$
Results Case 3

Gas Turbine

Coal

Storage
Results Summary

<table>
<thead>
<tr>
<th>Case</th>
<th>Coal Power</th>
<th>Gas Turbine</th>
<th>Renewable</th>
<th>Storage Size</th>
<th>Storage Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40%</td>
<td>40%</td>
<td>20%</td>
<td>12.9 GWh</td>
<td>948 MW</td>
</tr>
<tr>
<td>2</td>
<td>10%</td>
<td>40%</td>
<td>50%</td>
<td>26.8 GWh</td>
<td>1398 MW</td>
</tr>
<tr>
<td>3</td>
<td>75%</td>
<td>5%</td>
<td>20%</td>
<td>61.1 GWh</td>
<td>1188 MW</td>
</tr>
</tbody>
</table>
Economic Coefficients Sensitivity

\[\min_{X,Y} \beta_1 E_s^{\text{max}} + \beta_2 P_s^{\text{max}} \]

- The capital cost range for energy storage 5-100 $/kWh
- The capital cost range for power rating 600-2000 $/kW

Power rating cost can range from 6 times to 400 times the cost of the energy storage

<table>
<thead>
<tr>
<th>Power Rating Cost $/kW</th>
<th>Storage Cost $/kWh</th>
<th>Storage MWh</th>
<th>Power MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1,300</td>
<td>$100</td>
<td>12,674</td>
<td>956</td>
</tr>
<tr>
<td>$1,300</td>
<td>$55</td>
<td>12,884</td>
<td>948</td>
</tr>
<tr>
<td>$1,300</td>
<td>$26</td>
<td>13,549</td>
<td>932</td>
</tr>
<tr>
<td>$1,300</td>
<td>$13</td>
<td>15,638</td>
<td>905</td>
</tr>
</tbody>
</table>
Conclusions

Conclusion
• Presented methodology that regulates power production with a optimal controller
• Developed optimization scheme that designs power storage facilities
• Solved both problems simultaneously and arrived at a global optimal solution
• Sensitivity to cost parameters is small

Acknowledgements
• Department of Chemical and Biological Engineering, IIT
• NSF-CBET-0967906