IGCC Power Plant Dispatch Using Infinite Horizon Economic MPC

Donald J Chmielewski and Benjamin P Omell
Department of Chemical & Biological Engineering
Illinois Institute of Technology

AICheE Annual Meeting 2012
Outline

- Economic MPC
- IGCC Case Study
- Issues with Finite-Horizon EMPC
- Infinite-Horizon EMPC
 - Economic Linear Optimal Control
- Implementation with Imperfect Forecasting
Model Predictive Control

\[\min_{x,u} \int_{t}^{t+T} g(x,u,w) \, d\tau \]

s.t. \[\dot{x} = f(x,u,w) \]
\[z = h(x,u,w) \]
\[z^{\text{min}} \leq z(\tau) \leq z^{\text{max}} \]
Traditional MPC

Quadratic Objective

\[g(x,u,w) = x^T Q x + u^T R u \]

\[
\min_{x,u} \int_{t}^{t+T} g(x,u,w) \, d\tau
\]

s.t. \[\dot{x} = f(x,u,w) \]

\[z = h(x,u,w) \]

\[z_{\min} \leq z(\tau) \leq z_{\max} \]
Economic MPC

Economic Objective

\[
g(x,u,w) = - \text{(Instantaneous Profit)}
\]

\[
\min_{x,u} \int_t^{t+T} g(x,u,w) \, d\tau
\]

s.t. \quad \dot{x} = f(x,u,w)

\[
z = h(x,u,w)
\]

\[
z^{\text{min}} \leq z(\tau) \leq z^{\text{max}}
\]
Literature on EMPC

- **Conceptual Development and Stability Issues:** Rawlings and Amrit (2009); Diehl, et al. (2011); Huang and Biegler (2011); Heidarinejad, et al. (2012)

- **Process Scheduling:** Karwana and Keblisb (2007); Baumrucker and Biegler (2010); Lima et al. (2011); Kostina et al. (2011)

- **Power Systems:** Zavala et al. (2009); Xie and Ilić (2009), Hovgaard, et al. (2011), Omell and Chmielewski (2011)

- **HVAC Systems:** Braun (1992); Morris et al. (1994); Kintner-Meyer and Emery (1995); Henze et al. (2003); Braun (2007); Oldewurtel et al. (2010), Ma et al. (2012); Mendoza and Chmielewski (2012)
Outline

• Economic MPC

• IGCC Case Study

• Issues with Finite-Horizon EMPC

• Infinite-Horizon EMPC
 – Economic Linear Optimal Control

• Implementation with Imperfect Forecasting
Overview of Smart Grid

Generators

Transmission

Consumer Demand

Generator Dispatch

Renewable

Smart Homes

Smart Manufacturing

with Storage

Commercial Buildings
Integrated Gasification Combined Cycle
Hydrogen Gas Storage
Conventional IGCC

\[P_G = \beta v_{H_2,G} \]
IGCC with Dispatch Capability

\[\dot{M}_{H_2} = \nu_{H_2} - \frac{P_G}{\beta} \]

\[0 \leq \dot{M}_{H_2} \leq \dot{M}_{H_2}^{\text{max}} \]

\[0 \leq P_G \leq P_G^{\text{max}} \]
Economic MPC For IGCC

\[
\min_{P_G} \int_{t}^{t+T} -C_e P_G \, d\tau
\]

s.t. \(\dot{M}_{H2} = \nu_{H2} - P_G / \beta \)

\[
0 \leq M_{H2} \leq M_{H2}^{\text{max}}
\]

\[
0 \leq P_G \leq P_G^{\text{max}}
\]

\(C_e(t) \) is the cost (or value) of electricity
Economic MPC Simulation with Perfect Forecasting of $C_e(t)$
Impact of Horizon Size on EMPC

- Energy Value ($/MWhr)
- Generated Power (MW)
- H₂ in Storage (tonnes)

Time (days)
Inventory Depletion

...An additional time horizon of six months ... on the future demand [is required] to avoid a “myopic” inventory policy at the end of the scheduling period of 18 months.
Outline

- Economic MPC
- IGCC Case Study
- Issues with Finite-Horizon EMPC
 - Infinite-Horizon EMPC
 - Economic Linear Optimal Control
- Implementation with Imperfect Forecasting
Infinite Horizon MPC

\[
\min_{x,u} \left\{ \int_{t}^{\infty} g(x,u,w) d\tau \right\}
\]

s.t. \[
\dot{x} = Ax + Bu + Gw \\
z = D_x x + D_u u \\
z_{\min} \leq z(\tau) \leq z_{\max} \quad t < \tau < \infty
\]
Infinite Horizon Finite Constrained MPC

\[
\min_{x,u} \left\{ \int_{t}^{\infty} g(x,u,w) d\tau \right\}
\]

s.t. \[\dot{x} = Ax + Bu + Gw \]

\[z = D_x x + D_u u \]

\[z_{\text{min}} \leq z(\tau) \leq z_{\text{max}} \quad t < \tau < t + T \]
Infinite Horizon Finite Constrained MPC

\[
\min_{x,u} \left\{ \int_{t}^{t+T} g(x,u,w) d\tau + \int_{t}^{\infty} g(x,u,w) d\tau \right\}
\]

s.t. \quad \dot{x} = Ax + Bu + Gw

\[z = Dx x + Du u\]

\[z_{\min} \leq z(\tau) \leq z_{\max} \quad t < \tau < t + T\]
Finite Horizon MPC with Terminal Cost

\[
\min_{x,u} \left\{ \int_{t}^{t+T} g(x,u,w)d\tau + \Phi(x(t+T)) \right\}
\]

s.t. \[\dot{x} = Ax + Bu + Gw \]

\[
z = D_x x + D_u u
\]

\[
z_{\min} \leq z(\tau) \leq z_{\max} \quad t < \tau < t + T
\]
Unconstrained Value Function

\[\Phi(x(t + T)) = \min_{x,u} \left\{ \int_{t+T}^{\infty} g(x,u,w) d\tau \right\} \]

s.t. \hspace{10pt} \dot{x} = Ax + Bu + Gw
Unconstrained Value Function

\[\Phi(x(t+T)) = \min_{x,u} \left\{ \int_{t+T}^{\infty} g(x,u,w) d\tau \right\} \]

s.t. \(\dot{x} = Ax + Bu + Gw \)

If \(g(x,u,w) = - \) (Instantaneous Profit)
Unconstrained Value Function

\[\Phi(x(t + T)) = \min_{x,u} \left\{ \left. \int_{t+T}^{\infty} g(x,u,w) \, d\tau \right| s.t. \quad \dot{x} = Ax + Bu + Gw \right\} \]

If \(g(x,u,w) = - \) (Instantaneous Profit)

Then \(\Phi(\bullet) \) does not exist
Statistically Constrained Function

\[\Phi_{ELOC}(x(t+T)) = \min_{x,u} \left\{ \int_{t+T}^{\infty} g(x,u,w)d\tau \right\} \]

s.t. \quad \dot{x} = Ax + Bu + Gw

\[z = D_x x + D_u u \]

\[E[z^2] \leq \left(\min \left\{ -z^{\min}, z^{\max} \right\} \right)^2 \]
Outline

• Economic MPC
• IGCC Case Study
• Issues with Finite-Horizon EMPC
• Infinite-Horizon EMPC
 – Economic Linear Optimal Control
• Implementation with Imperfect Forecasting
ELOC Development

1. Stochastic Electricity Price Model
2. Constrained Stochastic Control
3. Analytic Expression for Revenue
4. Controller Synthesis
Electricity Price Model

White Noise Input → Shaping Filter → Sequence with Electricity Price Characteristics
Realization of Electricity

![Graph showing spectral density and electricity value over time.](image)
Scaled Electricity Prices

Overall Process Model:
\[\dot{x} = Ax + Bu + \alpha Gw \]
ELOC Development

1. Stochastic Electricity Price Model
2. Constrained Stochastic Control
3. Analytic Expression for Revenue
4. Controller Synthesis
Stochastic Constrained Control

Assume $u = Lx$ and find L such that

$$0 = (A + BL)\Sigma_x + \Sigma_x (A + BL)^T + \alpha^2 G S_w G^T$$

$$\zeta_j = \rho_j (D_x + D_u L)\Sigma_x (D_x + D_u L)^T \rho_j^T$$

$$\sigma_j = \sqrt{\zeta_j}$$

$$2\sigma_j < z_j^{\max} \quad \text{and} \quad 2\sigma_j < -z_j^{\min}, \, j = 1...n_z$$

Based on standard deviations (σ_j's)

Constraints z_j^{\min} and z_j^{\max}
ELOC Development

1. Stochastic Electricity Price Model
2. Constrained Stochastic Control
3. Analytic Expression for Revenue
4. Controller Synthesis
ELOC Objective Function

\[
\lim_{T \to \infty} \left\{ \frac{1}{T} \int_0^T C_e P_G dt \right\} = E[C_e P_G]
\]

\[
= E[\widetilde{C}_e \widetilde{P}_G] + \overline{C}_e \overline{P}_G
\]

where

\[
\widetilde{C}_e = C_e - \overline{C}_e , \quad \overline{C}_e = [C_e]
\]

\[
\widetilde{P}_G = P_G - \overline{P}_G , \quad \overline{P}_G = [P_G]
\]
ELOC Objective Function

\[
\lim_{T \to \infty} \left\{ \frac{1}{T} \int_0^T C_e P_G \, dt \right\} = E[\tilde{C}_e \tilde{P}_G] + \bar{C}_e \bar{P}_G
\]

Then, enforce the condition \(\tilde{P}_G = \alpha \tilde{C}_e \)

\[
E[\tilde{C}_e \tilde{P}_G] = E[\tilde{C}_e \alpha(\tilde{C}_e)]
\]

\[
= \alpha E[\tilde{C}_e^2]
\]

\[
= \alpha \Sigma_{C_e}
\]
ELOC Development

1. Stochastic Electricity Price Model
2. Constrained Stochastic Control
3. Analytic Expression for Revenue
4. Controller Synthesis
ELOC Synthesis

\[
\begin{align*}
\min_{L, \Sigma_x \geq 0, \zeta_j, \sigma_j, \alpha} & \left\{ \alpha \Sigma_{Ce} + \overline{C_e} \overline{P_G} \right\} \\
\text{s.t.} & \\
0 &= (A + BL) \Sigma_x + \Sigma_x (A + BL)^T + \alpha^2 G S_w G^T \\
\zeta_j &= \rho_j (D_x + D_u L) \Sigma_x (D_x + D_u L)^T \rho_j^T \\
\sigma_j &= \sqrt{\zeta_j} \\
2\sigma_j &< z_j^{\max} \quad \text{and} \quad 2\sigma_j < -z_j^{\min}, \; j = 1 \ldots n_z
\end{align*}
\]

\[
\Rightarrow u = L_{ELOC} x
\]

Can be solved with a Convex Optimization Problem
Comparison of ELOC and EMPC

- Power Generated (MW)
- \(\text{H}_2 \) in Storage (tonnes)

Illinois Institute of Technology
Department of Chemical and Biological Engineering
Outline

• Economic MPC
• IGCC Case Study
• Issues with Finite-Horizon EMPC
• Infinite-Horizon EMPC
 – Economic Linear Optimal Control
• Implementation with Imperfect Forecasting
Linear Quadratic Optimal Control

\[
\Phi(x(t+T)) = \min_{x,u} \left\{ \int_{t+T}^{\infty} g(x,u,w) d\tau \right\}
\]

s.t. \quad \dot{x} = Ax + Bu
Linear Quadratic Optimal Control

\[\Phi(x(t+T)) = \min_{x,u} \left\{ \int_{t+T}^{\infty} g(x,u,w) d\tau \right\} \]

s.t. \[\dot{x} = Ax + Bu \]

If \[g(x,u,w) = \begin{bmatrix} x^T \\ u^T \end{bmatrix} \begin{bmatrix} Q & M \\ M^T & R \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \]

\[\Phi(x(t+T)) = x(t+T)^T P_{LQR} x(t+T) \]

\[u = L_{LQR} x \]
Infinite Horizon EMPC

\[\Phi(x(t+T)) = \min_{x,u} \left\{ \int_{t+T}^{\infty} g(x,u,w) d\tau \right\} \]

s.t. \[\dot{x} = Ax + Bu + Gw \]

\[g(x,u,w) = \begin{bmatrix} x^T \\ u^T \end{bmatrix} \begin{bmatrix} Q_{ELOC} & M_{ELOC} \\ M_{ELOC}^T & R_{ELOC} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \]

\[\Phi(x(t+T)) = x(t+T)^T P_{ELOC} x(t+T) \]

\[u = L_{ELOC} x \]
Inverse Optimality Theorem

Chmielewski & Manthanwar (2004):

If there exists $P > 0$ and $R > 0$ such that

$$
\begin{bmatrix}
L^T R L - A^T P - PA & -(L^T R + PB) \\
-(L^T R + PB)^T & R
\end{bmatrix} > 0
$$

Then $M = -(L^T R + PB)$ and $Q = L^T R L - A^T P + PA$ are such that

$$
\begin{bmatrix}
Q & M \\
M^T & R
\end{bmatrix} > 0 \quad \text{and } P \text{ and } L \text{ satisfy}
$$

$$
A^T P + PA + Q - (PB + M)R^{-1}(PB + M)^T = 0
$$

$$
L = -R^{-1}(PB + M)^T
$$
IGCC Example

\[L_{ELOC} = \begin{bmatrix} 0.067 & -14.15 & 12.94 & -0.6943 \end{bmatrix} \]

\[Q_{ELOC} = \begin{bmatrix} 15.66 & -3303.5 & 3020.6 & -162.13 \\ -3303.3 & 6.96e5 & -6.37e5 & 34198 \\ 3020.6 & -6.37e5 & 5.826e5 & -31270 \\ -162.13 & 34198 & -31270 & 1684.2 \end{bmatrix} \]

\[M_{ELOC} = \begin{bmatrix} -233.52 \\ 49255 \\ -45038 \\ 2417.5 \end{bmatrix} \]

\[R_{ELOC} = \begin{bmatrix} 3481.9 \end{bmatrix} \]

\[P_{ELOC} = \begin{bmatrix} 7.26e-5 & 0.0022 & 0.0125 & 0.0002 \\ 0.0022 & 0.498 & 0.540 & -0.019 \\ 0.0125 & 0.540 & 8.76 & -0.224 \\ 0.0002 & -0.019 & -0.224 & 6.66 \end{bmatrix} \]
Infinite Horizon EMPC

\[
\min_{x,u} \left\{ \int_t^{t+T} \begin{bmatrix} x^T & u^T \end{bmatrix} \begin{bmatrix} Q_{ELOC} & M_{ELOC}^T \\ M_{ELOC} & R_{ELOC} \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} d\tau + x(t+T)^T P_{ELOC} x(t+T) \right\}
\]

s.t. \[\dot{x} = Ax + Bu + Gw \]
\[z = D_x x + D_u u \]
\[z_{\text{min}} \leq z(\tau) \leq z_{\text{max}} \quad t < \tau < t+T \]
ELOC and Unconstrained IH-EMPC

![Graph showing Power Generated and H₂ in Storage over time]

- **Power Generated (MW)**
 - Y-axis: -4000 to 4000
 - X-axis: Time (days)

- **H₂ in Storage (tonnes)**
 - Y-axis: -2000 to 4000
 - X-axis: Time (days)
Constrained IH-EMPC
24-hr horizon
Horizon Size Sensitivity

Difference in computation times for 30 day simulation:
- EMPC 24 hr horizon ~ 22.8 sec
- IH-EMPC 1 hr horizon ~ 0.02 sec
- Reduction of 99.9%
Outline

• Economic MPC
• IGCC Case Study
• Issues with Finite-Horizon EMPC
• Infinite-Horizon EMPC
 – Economic Linear Optimal Control
• Implementation with Imperfect Forecasting
Prediction of Electricity Price

White Noise Input \rightarrow Shaping Filter \rightarrow Sequence with Electricity Price Characteristics

Measured Electricity Price \rightarrow State Estimator and/or Predictor \rightarrow Prediction of Electricity Price
Imperfect Forecast Simulation

- Energy Value ($/MWhr)
- Generated Power (MW)
- H_2 in Storage (tonnes)

IH-EMPC, EMPC
Revenue

<table>
<thead>
<tr>
<th>Case</th>
<th>Revenue (10^3 $/day)</th>
<th>Revenue Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Dispatch</td>
<td>557.6</td>
<td>-</td>
</tr>
<tr>
<td>EMPC: Perfect Forecast</td>
<td>765.7</td>
<td>27.2%</td>
</tr>
<tr>
<td>EMPC: Imperfect Forecast</td>
<td>683.9</td>
<td>18.5%</td>
</tr>
<tr>
<td>IH-EMPC: Imperfect Forecast</td>
<td>736.0</td>
<td>24.0%</td>
</tr>
</tbody>
</table>
Conclusions

- Illustrated issues with Finite Horizon EMPC
 - Inventory creep
 - Manipulated variable chattering
- Proposed a Infinite Horizon Formulation
 - Provided IH-EMPC tuning methods
 - Sensitivity to horizon size nearly eliminated
- IH-EMPC less sensitive to forecast errors.
Acknowledgements

• Current and Former Students:
 David Mendoza-Serrano
 Ming Yang (Taiwan Electric)
 Amit Manthanwar

• Personal Communications:
 Ignacio E. Grossman and Ricardo M Lima

• Funding:
 National Science Foundation (CBET – 0967906)