Seashell Interpretation in Architectural Forms

From the study of seashell geometry, the mathematical process on shell modeling is extremely useful. With a few parameters, families of coiled shells were created with endless variations. This unique process originally created to aid the study of possible shell forms in zoology. The similar process can be developed to utilize the benefit of creating variation of the possible forms in architectural design process.

The mathematical model for generating architectural forms developed from the mathematical model of gastropods shell, however, exists in different environment. Normally human architectures are built on ground some are partly underground subjected different load conditions such as gravity load, wind load and snow load.

In human architectures, logarithmic spiral is not necessary become significant to their shapes as it is in seashells. Since architecture not grows as appear in shells, any mathematical curve can be used to replace this, so call, growth spiral that occur in the shells during the process of growth. The generating curve in the shell mathematical model can be replaced with different mathematical closed curve. The rate of increase in the generating curve needs not only to be increase. It can be increase, decrease, combination between the two, and constant by ignore this parameter. The freedom, when dealing with architectural models, has opened up much architectural solution. In opposite, the translation along the axis in shell model is greatly limited in architecture, since it involves the problem of gravity load and support condition.

Mathematical Curves

To investigate the possible architectural forms base on the idea of shell mathematical models, the mathematical curves are reviewed. As in shell curve, the study in this step will focus on utilizing every mathematical curves property. Most influent works reviewed in this area are A Handbook on Curves and Their Properties by Robert C. Yates 1947, A Book of Curves by Edward Harrington Lockwood 1961, A Catalog of Special Plane Curves by J. Dennis Lawrence 1972, Concise Encyclopedia of Mathematics (CD-ROM) by Eric W. Weissstein 1999, and some related woks such as Wobbly Spiral by John Shape and mathematical related website.
In this chapter, all mathematical curves are divided into four curve groups in order to facilitate a further development of their property.

1. Close Curves

The mathematical plane curve that always complete or close itself at the 360-degree. Close curves are the followings:

- Circle
- Ellipse
- Piriform
- Bicorn
- Astroid
- Deltoid
- Eight
- Bifolium
- Folia
- Lemniscate of Bernoulli
- Epicycloid
- Hypocycloid
- Epitrochoid
- Hypotrochoid
- Cardioid
- Nephroid of Freeths
- Cayley’s Sextic
- Lissajous
- Nephroid
- Rhodonea
- Limacon of Pascal
- Hippopede

2. Open Curves

The mathematical plane curve that never complete or close itself. It represents a single body of curve in one loop (360-degree). This group is divided into three minor group bases on the curve characteristic.

2.1 Increasing Curves

This type of open curve creates only a single curvature without repeating. Increasing curves are the followings:

- Hyperbola
- Parabola
- Pedals of Parabola
- Semi-Cubical Parabola
- Catenary
- Kappa
- Kampyle of Eudoxus
- Bullet Nose
- Serpentine
- Cross
- Conchoid of Nicomedes
- Tschirnhausen’s Cubic
- Witch of Agnesi
- Cissoid of Diocles
- Right Strophoid
- Trisectrix of Maclaurin
- Folium of Descartes
- Tractrix

2.2 Periodic Curves
In opposite of the increasing curve, this type of open curve continuously repeats similar curvature along the increasing angle. Periodic curves are the followings:

- Sine Curve
- Cosind Curve
- Cycloid
- Trochoid

2.1 Spiral Curves

Spiral is open curve that every point in the curve travels around the center axis or pole. Spiral curves are the followings:

- Involute of a Circle
- Fermat’s Spiral
- Poinset’s Spirals
- Cochleoid
- Archimedes’ Spiral
- Logarithmic Spiral
- Hyperbolic Spiral
- Lituus
- Euler’s Spiral

2.2 Special Spiral Curves

These curves are developed from others mathematical curves known for mathematician but interpret them into new mathematical property. Special Spiral curves are the followings:

- Wobbly Spiral
- Rectangular Spiral

3. Three-dimensional Curves

This curve is either close or open. The major difference is that the curve takes the height in z-axis while the others are not considering this axis. Three-dimensional curves are the followings:

- Spherical spiral
- Helix
- Cylinder

Each mathematical function and its property mentioned above can be found in a greater detail in appendix.

Seashell Properties and Architecture Properties

Seashell Properties
Again, base on the study in the previous chapter, these are known parameters in shell mathematical study and modeling. For further study of this research, however, a short terminology is introduced to represent these four parameters originally called after those researchers in biology and zoology. These new terms are called as the followings:

<table>
<thead>
<tr>
<th>Biology and Zoology Terms</th>
<th>Research Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The shape of generating curve.</td>
<td>= Section</td>
</tr>
<tr>
<td>2. The rate of increase of the generating curve.</td>
<td>= Growth</td>
</tr>
<tr>
<td>3. The position of generating curve to the axis.</td>
<td>= Path</td>
</tr>
<tr>
<td>4. The rate translation along the axis.</td>
<td>= Height</td>
</tr>
</tbody>
</table>

Figure xx: Section
A seashell cross sectional outline of the hollow shell tube.

Figure xx: Growth
The rate of increase of the section in size.

Figure xx: Path
The position of generating curve to the axis.

Figure xx: Height
The rate translation along the axis in vertical direction.
Mathematical Curves Properties

A unique property in each parameter can be explored with various mathematical properties. In seashell these relationships are limited depend upon the actual geometry of shells. Here, the limitations are less. The link from seashell properties to mathematical properties is presented in the following table.

<table>
<thead>
<tr>
<th>Research Terms</th>
<th>Seashell Relative to Its Mathematical Properties</th>
<th>Mathematical Curves Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Section</td>
<td>Circle, Ellipse, Free shape</td>
<td>Close Curves</td>
</tr>
<tr>
<td>2. Growth</td>
<td>Exponential Function</td>
<td>Open Curves</td>
</tr>
<tr>
<td>3. Path</td>
<td>Logarithmic Spiral</td>
<td>Open, 3D Curve</td>
</tr>
<tr>
<td>4. Height</td>
<td>Progressive Function</td>
<td>Open Curves</td>
</tr>
</tbody>
</table>

Architectural Properties

In architectural forms, there are some others parameters that architects and engineers have to take into consideration. These architectural parameters came from basic design principle in architecture or the fundamental functions and conditions that make architectural forms work. In this research, the goal is experimenting on architectural forms in general. It is not intended to find architectural form to suite one particular project. Without a specific requirement of the actual site and actual project, the architectural parameters can be set in general as the followings:

1. Ground condition.
2. Human scale and proportion.
3. Wall opening and circulation.

Integrating these three unique properties, which are seashell, mathematics, and architecture, certainly yields the result in the mathematical interpretation of architectural forms that maintain the seashell signature. The integration of these three can be done by programming language, similar process in chapter III.

The parameters involved in the program will start from less to a complex one. The mathematical functions behind these architectural forms are reviewed as follows:
Circle:

Mathematical Function:

\[x = r \cos t \]
\[y = r \sin t \quad , \quad - \pi \leq t \leq \pi \]

\[r = 1, 1.5, 2 \]

Factors: \(r = \) radius

Reference:
Ellipse:

Mathematical Function:

\[x = a \cos t \]
\[y = b \sin t \quad , \quad -\frac{\pi}{2} \leq t \leq \frac{\pi}{2} \]

Factors: \(a = \) radius in x-axis
\(b = \) radius in y-axis

Reference:
Piriform: (De Longchamps, 1886)

The piriform is also known as the pear-shaped quartic.

Mathematical Function:

\[
x = a (1 + \sin t)
\]

\[
y = b \cos t (1 + \sin t), \quad -\frac{\pi}{2} \leq t \leq \frac{3\pi}{2}
\]

\(a = 1, 2, 3\) \hspace{1cm} \(b = 1\)

Factors: \(a = x\)-axis distance \hspace{1cm} \(b = y\)-axis distance

Reference:
Bicorn: (Sylvester, 1864)

Mathematical Function:

\[
\begin{align*}
 x &= a \sin t \\
 y &= \frac{a \cos^2 t (2 + \cos t)}{3 + \sin^2 t}, \quad \text{for } -\pi \leq t \leq \pi
\end{align*}
\]

\[a = 1, 2, 3\]

Factors: \(a = \text{scale of curve}\)

Reference:
Epicycloid: (Roemer, 1674)

Mathematical Function:

\[
\begin{align*}
x &= m \cos t - b \cos \frac{m}{b} t \\
y &= m \sin t - b \sin \frac{m}{b} t
\end{align*}
\]

, \ - \pi \leq t \leq \pi

Factors:
\(m \) = scale of curve
\(b \) = number of cusps

Reference:
Epitrochoid:

Mathematical Function:

\[x = m \cos t - h \cos \frac{m}{b} t \]
\[y = m \sin t - h \sin \frac{m}{b} t \]

\[, \quad -\pi \leq t \leq \pi \]

Factors:
\(m \) = scale of curve
\(b \) = number of cusps
\(h \) = overlapping

Reference:
J. Dennis Lawrence, A Catalog of Special Plane Curves, Dover Publications, Inc., 1972 (p. 160)
Hypotrochoid:

Mathematical Function:

\[
\begin{align*}
x &= n \cos t + h \cos \frac{n}{b} t \\
y &= n \sin t - h \sin \frac{n}{b} t , \quad -\pi \leq t \leq \pi
\end{align*}
\]

Factors:
n = scale of curve
b = number of cusps
h = overlapping

Reference:
Eight:

Mathematical Function:

\[x = a \cos t \]
\[y = a \sin t \cos t \quad , \quad -\pi \leq t \leq \pi \]

\[a = 1, 2, 3 \]

Factors: \(a \) = scale of curve

Reference:
Lemniscate of Bernoulli:

Mathematical Function:

\[
\begin{align*}
x &= \frac{a \cos t}{1 + \sin^2 t} \\
y &= \frac{a \sin t \cos t}{1 + \sin^2 t}, \quad -\pi \leq t \leq \pi
\end{align*}
\]

Factors: \(a = \text{scale of curve} \)

Reference:
Astroid: (Roemer, 1674; Bernolli, 1691)

Mathematical Function:

\[x = a (3 \cos t + \cos 3 t) \]
\[y = a (3 \sin t - \sin 3 t) \quad , \quad -\pi \leq t \leq \pi \]

\[a = 1, 2, 3 \]

Factors: \(a = \) scale of curve

Reference:
J. Dennis Lawrence, A Catalog of Special Plane Curves, Dover Publications, Inc., 1972 (p. 173)
Hypocycloid:

Mathematical Function:

\[x = n \cos t + b \cos \frac{n}{b} t \]
\[y = n \sin t - b \sin \frac{n}{b} t, \quad -\pi \leq t \leq \pi \]

Factors:
- \(n \) = scale of curve
- \(b \) = number of cusps

Reference:
Cardioid: (Koersma, 1689)

Mathematical Function:

\[
\begin{align*}
 x &= 2a \cos t (1 + \cos t) \\
 y &= 2a \sin t (1 + \cos t), \quad -\pi \leq t \leq \pi
\end{align*}
\]

Factors: \(a = 0.5, 0.75, 1\)

Reference:
Nephroid of Freeths:

Mathematical Function:

\[r = a \left(1 + 2 \sin \frac{1}{2} \theta\right) \]

\[x = r \cos t \]

\[y = r \sin t \]

, \(-\pi \leq t \leq \pi\)

Factors: \(a = \text{scale of curve}\)

Reference:
Cayley’s Sextic: (Maclaurin, 1718)

Mathematical Function:

\[r = a \cos^3 \frac{1}{3} \theta \]
\[x = r \cos t \]
\[y = r \sin t \quad , \quad -\pi \leq t \leq \pi \]

Factors: \(a = \) scale of curve

Bifolium:

Mathematical Function:

\[r = 4a \sin^2 \theta \cos \theta \]
\[x = r \cos t \]
\[y = r \sin t \quad , \quad -\pi \leq t \leq \pi \]

\[a = 1, 2, 3 \]

Factors: \(a = \) scale of curve

Reference:
Folia: (Kepler, 1609)

Mathematical Function:

\[r = \cos \theta (4a \sin^2 \theta - b) \]
\[x = r \cos t \]
\[y = r \sin t \]

, \(-\pi \leq t \leq \pi\)

Factors:
- \(a = \) scale of curve
- \(b = \) 4 \(a\), Single folium
- \(b = 0\), Bifolium
- \(0 < b < 4 \), Trifolium

Reference:
Lissajous:

Mathematical Function:

\[x = a \sin (n t + c) \]
\[y = b \sin t \]

\[-\pi \leq t \leq \pi\]

Factors:
- \(a\) = x-axis distance
- \(b\) = y-axis distance
- \(c\) = x-axis factor
- \(n\) = number of loop

Reference:
Nephroid: (Huygens, 1678)

Mathematical Function:

\[
\begin{align*}
x &= a \left(3 \cos t - \cos 3t \right) \\
y &= a \left(3 \sin t - \sin 3t \right), \quad -\pi \leq t \leq \pi
\end{align*}
\]

\[a = 0.5, 0.75\]

Factors: \(a = \text{scale of curve}\)

Reference:
Rhodonea: (Grandi, 1723)

Mathematical Function:

\[r = a \cos m \theta \]
\[x = r \cos t \]
\[y = r \sin t \quad , \quad -\pi \leq t \leq \pi \]

\[a = 1, \quad m = 3 \quad \quad a = 2, \quad m = 4 \]

Factors:
\[a = \text{scale of curve} \]
\[m = \text{number of loop} \]

Reference:
Limacon of Pascal: (Pascal, 1650)

Mathematical Function:

\[r = 2a \cos \theta + b \]
\[x = r \cos t \]
\[y = r \sin t \]

, \(-\pi \leq t \leq \pi\)

Factors: \(a = \) scale of curve; \(a = 0\), Circle
\(b = a\), Trisectrix
\(b = 2a\), Cardioid

Reference:
J. Dennis Lawrence, *A Catalog of Special Plane Curves*, Dover Publications, Inc., 1972 (p. 113)
Deltoid: (Euler, 1745)

Mathematical Function:

\[
\begin{align*}
 x &= a (2 \cos t + \cos 2 t) \\
 y &= a (2 \sin t - \sin 2 t)
\end{align*}
\]

, \(-\pi \leq t \leq \pi\)

\(a = 0.5, 0.75, 1\)

Factors: \(a = \text{scale of curve}\)

Reference:
Hippopede: (Proclus, ca. 75 B.C.)

Mathematical Function:

\[
\begin{align*}
x &= 2 \cos t \sqrt{a b - b^2 \sin^2 t} \\
y &= 2 \sin t \sqrt{a b - b^2 \sin^2 t}, \quad -\pi \leq t \leq \pi
\end{align*}
\]

Factors: \(a = \text{scale of curve} \quad b < a\)

Reference:
Hyperbola:

Mathematical Function:

\[x = a \sec t \]
\[y = b \tan t \quad , \quad -\pi \leq t \leq \pi \]

Factors: \(a = x\)-axis distance
\(b = y\)-axis distance

Reference:
Kappa: (Gutschoven’s curve)

Mathematical Function:

\[x = a \cos t \cot t \]

\[y = a \cos t \quad , \quad 0 < t < 2\pi \]

\[a = 1, 2, 3 \]

Factors: \(a = \) scale of curve

Reference:
Kampyle of Eudoxus:

Mathematical Function:

\[x = a \sec t \]
\[y = a \tan t \sec t \quad , \quad -\frac{\pi}{2} < t < \frac{3\pi}{2} \]

\[a = 1, 2, 3 \]

Factors: \(a \) = scale of curve

Reference:
Bullet Nose: (Schoute, 1885)

Mathematical Function:

\[x = a \cos t \]
\[y = b \cot t \quad , \quad -\pi < t < \pi \]

a = 1, b = 1
\quad a = 3, b = 1

Factors:
\quad a = x-axis distance
\quad b = y-axis distance

Reference:
Cross:

Mathematical Function:

\[x = a \sec t \]
\[y = b \csc t \]

\[- \pi < t < \pi\]

Factors: \(a = \) x-axis distance
\(b = \) y-axis distance

Reference:
Conchoid of Nicomedes: (Nicomedes, 225 B.C.)

Mathematical Function:

\[x = b + a \cos t \]
\[y = \tan t \left(b + a \cos t \right), \quad -\frac{\pi}{2} < t < \frac{3\pi}{2} \]

Factors: \(a = \) x-axis distance
\(b = \) y-axis distance

Reference:
Parabola:

Mathematical function:

\[
x = a \ t^2
\]

\[
y = 2a \ t \quad , \quad - \infty < t < \infty
\]

\[a = 1, 2, 3\]

Factors: \(a = \text{scale of curve}\)

Reference:
Semi-Cubical Parabola: (Isochrone)

Mathematical Function:

\[
\begin{align*}
x &= 3 \ a \ t^2 \\
y &= 2 \ a \ t^3 \\
-\infty &< t < \infty
\end{align*}
\]

\(a = 1, 2, 3\)

Factors: \(a = \text{scale of curve}\)

Reference:
Tschirnhausen’s Cubic:

Mathematical Function:

\[
x = a \left(1 - 3t^2 \right) \\
y = at \left(3 - t^2 \right) , \quad -\infty < t < \infty
\]

\[a = 0.25, \ 0.5\]

Factors: \(a =\) scale of curve

Reference:
Witch of Agnesi: (Fermat, 1666; Agnesi, 1748)

Mathematical Function:

\[x = 2a \tan t \]
\[y = 2a \cos^2 t \quad , \quad -\frac{\pi}{2} < t < \frac{\pi}{2} \]

\[a = 0.5, 0.75, 1\]

Factors: \(a\) = scale of curve

Reference:
Pedals of Parabola:

Mathematical Function:

\[x = a (\sin^2 t - m \cos^2 t) \]
\[y = a \tan t (\sin^2 t - m \cos^2 t) \quad , \quad -\frac{\pi}{2} < t < \frac{\pi}{2} \]

Factors:
\(a = \) scale of curve
\(m > 0, \) one loop
\(m \leq 0, \) no loop

Reference:
J. Dennis Lawrence, *A Catalog of Special Plane Curves*, Dover Publications, Inc., 1972 (p. 94)
Cissoid of Diocles: (Diocles, ca. 200 B.C.)

Mathematical Function:

\[x = a \sin^2 t \]
\[y = a \tan t \sin^2 t \quad , \quad -\infty < t < \infty \]

\(a = 1, 2, 3 \)

Factors: \(a = \) scale of curve

Reference:
Right Strophoid: (Barrow, 1670)

Mathematical Function:

\[x = a (1 - 2 \cos^2 t)\]
\[y = a \tan t (1 - 2 \cos^2 t), \quad -\frac{\pi}{2} < t < \frac{\pi}{2}\]

Factors: \(a = \text{scale of curve}\)

Reference:
J. Dennis Lawrence, \textit{A Catalog of Special Plane Curves}, Dover Publications, Inc., 1972 (p. 100)
Trisectrix of Maclaurin: (Maclaurin, 1742)

Mathematical Function:

\[x = a \left(1 - 4 \cos^2 t\right) \]
\[y = a \tan t \left(1 - 4 \cos^2 t\right), \quad -\frac{\pi}{2} < t < \frac{\pi}{2} \]

\(a = 0.5, 0.75, 1 \)

Factors: \(a = \) scale of curve

Reference:
Folium of Descartes: (Descartes, 1638)

Mathematical Function:

\[
\begin{align*}
x &= \frac{3 \ a \ t}{1 + t^3} \\
y &= \frac{3 \ a \ t^2}{1 + t^3}, \quad -\infty < t < \infty
\end{align*}
\]

a = 0.5, 0.75, 1

Factors: a = scale of curve

Reference:
Serpentine:

Mathematical Function:

\[x = a \cot t \]
\[y = b \sin t \cos t, \quad 0 < t < \pi \]

Factors:
- \(a \) = x-axis distance
- \(b \) = y-axis distance

Reference:
Tractrix: (Huygens, 1692)

Mathematical Function:

\[
\begin{align*}
x &= a \ln(\sec t + \tan t) - a \sin t \\
y &= a \cos t, \quad \frac{-\pi}{2} < t < \frac{\pi}{2}
\end{align*}
\]

Factors: \(a = \) scale of curve

\(a = 1, 2, 3\)

Reference:

Catenary:

Mathematical Function:

\[x = t \]
\[y = a \cosh \frac{t}{a} , \quad -\pi < t < \pi \]

a = 1

Factors: a = scale of curve

Reference:
Involute of a Circle: (Huygens, 1693)

Mathematical Function:

\[
x = a (\cos t + t \sin t) \\
y = a (\sin t - t \cos t)
\]

, \(-\infty < t < \infty \)

\(a = 0.5; \) \(0 - 360 \) degree

Factors: \(a = \) scale of curve

Reference:

Poinset's spirals:

Mathematical Function:

\[r = \frac{a}{\cosh n \theta} \quad \text{and} \quad \frac{a}{\sinh n \theta} \]

\[x = r \cos t \]

\[y = r \sin t \quad , \quad 0 < t < \pi \]

Factors: \(a = \) x-axis distance
\(b = \) y-axis distance

Reference:
Fermat’s Spiral:

Mathematical Function:

\[r = a \sqrt{\theta} \]
\[x = r \cos t \]
\[y = r \sin t \quad , \quad 0 < t < \pi \]

\[a = 1; \quad 0 - 360 \text{ degree} \]

Factors: \(a = \) scale of curve

Reference:
Cochleoid: (Bernoulli, 1726)

Mathematical Function:

\[r = \frac{a \sin \theta}{\theta} \]
\[x = r \cos t \]
\[y = r \sin t \quad , \quad 0 < t < \pi \]

\[a = 4; \quad 0 - 1080 \text{ degree} \]

Factors: \(a = \) scale of curve

Logarithmic: (Descartes, 1638)

Mathematical Function:

\[r = \exp (a \theta) \]
\[x = r \cos t \]
\[y = r \sin t \quad , \quad 0 < t < \pi \]

Factors: \(a = \) scale of curve

Reference:
J. Dennis Lawrence, A Catalog of Special Plane Curves, Dover Publications, Inc., 1972 (p. 184)
Archimedes’ Spiral: (Sacchi, 1854)

Mathematical Function:

\[r = a \theta \]
\[x = r \cos t \]
\[y = r \sin t \], \quad 0 < t < \pi

\[a = 0.2; \quad 0 \text{ to } 1080 \text{ degree} \]

Factors: \(a \) = scale of curve

Reference:
Hyperbolic Spiral:

Mathematical Function:

\[r = \frac{a}{\theta}, \quad x = r \cos t, \quad y = r \sin t, \quad 0 < t < \pi \]

\[a = 3; \quad 0 - 1080 \text{ degree} \]

Factors: \(a = \) scale of curve

Reference:
Lituus:

Mathematical Function:

\[r = \frac{a}{\sqrt{\theta}} \]
\[x = r \cos t \]
\[y = r \sin t \quad , \quad 0 < t < \pi \]

\[a = 1; \quad 0 - 1080 \text{ degree} \]

Factors: \(a = \) scale of curve

Reference:
Wobbly Spiral:

Mathematical Function:

\[r = (1 + 2k \sin \frac{4\theta}{3}) \, a \, e^{\theta/k} \]

\[k = \frac{\ln \phi}{3} \]

\[x = r \cos t \]

\[y = r \sin t \]

\(0 < t < \pi \)

Factors: \(a = 0.5; \) 0 - 1440 degree

Reference:
Euler’s Spiral: (Euler, 1744)

Mathematical Function:

\[
x = a \frac{\sin t}{\sqrt{t}} \, dt \\
y = a \frac{\cos t}{\sqrt{t}} \, dt , \quad 0 \leq t < \infty
\]

\[a = 3, \quad d = 1\]

Factors: \(a = \text{scale of curve}\)
\(d = \text{scale of curve}\)

Reference:
Cycloid: (Mersenne, 1599)

Mathematical Function:

\[
x = a \cdot t + h \sin t \\
y = a - h \cos t \\
-\infty < t < \infty
\]

Factors: \(a = \) scale of curve
\(h = \) overlapping
0 - 1080 degree

Reference:
Trochoid:

Mathematical Function:

\[
\begin{align*}
x &= a t - h \sin t \\
y &= a - h \cos t
\end{align*}
\]

, \(-\infty < t < \infty\)

Factors:
\(a\) = scale of curve
\(h\) = overlapping

0 - 1080 degree

Reference:
Sine and Cosine Curve:

Mathematical Function:

\[x = x \]
\[y = X \sin t \quad , \quad 0 < t < \infty \]

(Missing sine and cosine images)