Related to Stochastics Differential Equations

  1. X. Sun, J. Duan and X. Li, Stochastic modeling of nonlinear oscillators under combined Gaussian and Poisson White noise Nonlinear Dynamics (2016) 84, 1311--1325. pdf
  2. T. Gao, J. Duan and X. Li, Fokker-Planck Equations for Stochastic Dynamical Systems with Symmetric Lévy Motions Applied Mathematics and Computation (2016) 278, 1--20. pdf
  3. X. Wang, J. Duan, X. Li and Y. Luan, Numerical methods for the mean exit time and escape probability of two-dimensional stochastic dynamical systems with non-Gaussian noises Applied Mathematics and Computation (2015) 258, 282--295. pdf
  4. T. Gao, J. Duan, X. Li and R. Song, Mean exit time and escape probability for dynamical systems driven by Lévy noises SIAM J. Sci. Comput. (2014) 36(3), A887--A906. pdf
  5. X. Sun, J. Duan and X. Li, An alternative expression for stochastic dynamical systems with parametric Poisson white noise Probabilistic Engineering Mechanics (2013) 32, 1--4. pdf
  6. X. Sun, J. Duan and X. Li, An Impact of Noise on Invariant Manifolds in Nonlinear Dynamical Systems J. of Math. Phys. (2010) 51, 042702. pdf

Biology, Fluids and Rheology

  1. H. Feng, A. Córdoba, F. Hernandez, T. Indei, S. Li, X. Li and J. D. Schieber, A boundary integral method for computing forces on particles in unsteady Stokes and linear viscoelastic fluids Int. J. Numer. Meth. Fluids (2016) 82, 198--217. pdf
  2. J. Sohn, S. Li, X. Li and J. Lowengrub, Axisymmetric multicomponent vesicles: A comparison of hydrodynamic and geometric models Int. J. Numer. Meth. Biomed. Engng. (2012) 28, 346--368. pdf
  3. X. Sun and X. Li, A spectrally accurate boundary integral method for interfacial velocities in two-dimensional Stokes flow Commun. Comput. Phys. (2010) 8(4), 933--946. pdf
  4. X. Li and C. Pozrikidis (2003) Film flow of a suspension down an inclined plane, Phil. Trans. R. Soc. Lond. A 361, 847-869. pdf version
  5. Q. Nie, S. Tanveer, T.~F. Dupont and X. Li (2002) Singularity formation in Free-surface Stokes flows, Contemporary Mathematics 306, 147-165. pdf version
  6. X. Li and C. Pozrikidis (2002) Film flow of a suspension of liquid drops, Physics of Fluids 14(1), 61-74. ps or pdf version
  7. X. Li and C. Pozrikidis (2000) Wall-bounded and channel flow of suspensions of liquid drops, Int. J. of Multiphase Flow 26, 1247-1279.
  8. X. Li and C. Pozrikidis (1997) Effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow, J. Fluid Mech. 341, 165--194. ps
  9. X. Li, R. Charles and C. Pozrikidis (1996) Simple shear flow of suspensions of liquid drops, J. Fluid Mech. 320, 395--416. text (postscript format) and figures (tar file)
  10. X. Li and C. Pozrikidis (1996) Shear flow over a liquid drop adhering to a solid surface, J. Fluid Mech. 307, 167--190. ps
  11. X. Li, H. Zhou and C. Pozrikidis (1995) A numerical study of the shearing motion of emulsions and foams emulsions, J. Fluid Mech. 286, 379--404. ps
  12. R. Caflisch, X. Li and M. Shelley (1993) The collapse of an axi-symmetric, swirling vortex sheet, Nonlinearity 6, 843--867. ps
  13. R. Caflisch and X. Li (1992) Lagrangian theory for 3D vortex sheets with axial or helical symmetry, J. Trans. Theory and Stat. Phys. 21, 559--578. ps

Acoustics

  1. F. Ning, Qilei Guo and X. Li (2015) Transient motion of finite amplitude standing waves in acoustic resonators Wave Motion 53, 28--39. pdf
  2. F. Ning and X. Li (2013) Numerical simulation of finite amplitude standing waves in acoustic resonators using finite volume method Wave Motion 50(2), 135--145. pdf
  3. X. Li and G. Raman, Numerical methods for nonlinear acoustic resonators in Computational Methods in Nonlinear Acoustics: Current Trends (p. 21--32) , eds. C. Vanhille and C. Campos-Pozuelo, Research Signpost (2011), ISBN 978-81-308-0445-3. pdf
  4. X. Li, J. Finkbeiner, G. Raman, C. Daniels and B. Steinetz (2004) Optimized shapes of oscillating resonators for generating high-amplitude pressure waves, J. Acoust. Soc. Am. 116, 2814--2821. pdf
  5. X. Li, J. Finkbeiner, G. Raman, Christopher Daniels and Bruce Steinetz (2003) Nonlinear resonant oscillations of gas in optimized acoustical resonators, 41st AIAA Aerospace Sciences Meeting and Exhibit Jan. 6-9, 2003, Reno, Neveda. pdf version

Materials Science

  1. H. Feng, A. Barua, S. Li and X. Li (2014) An adaptive treecode algorithm for computing the evolution of microstructures in an elastic media Commun. Comput. Phys. 15(2), 365--387. pdf
  2. A. Barua, S. Li, X. Li and J. Lowengrub (2012) Self-similar evolution of a precipitate in inhomogeneous elastic media Journal of Crystal Growth 351, 62--71. pdf
  3. S. Li and X. Li (2011) A boundary integral method for computing dynamics of an epitaxial island SIAM J. Sci. Comput. 33(6), 3282--3302. pdf
  4. X. Li and Q. Nie, (2009) A High-order Boundary Integral Method for Surface Diffusions on Elastically Stressed Axisymmetric Rods, J. of Comput. Phys. 228(12), 4625--37. Click here for the paper.
  5. H.-C. Yu, D.-H. Yeon, X. Li and K. Thornton, (2009) Continuum simulations of the formation of Kirkendall-effect-induced hollow cylinders in a binary substitutional alloy, Acta Mater. Click here for the paper.
  6. X. Li and Q. Nie, (2007) Surface diffusion on stressed solid surface, Commun. Comput. Phys. 2(1), 73--86. pdf
  7. X. Li, (2005) An efficient method for computing microstructural evolution of elastically homogeneous media, Comput. Mater. Sci. 34, 70--81. pdf
  8. X. Li, K. Thornton, Q. Nie, P. W. Voorhees and J. S. Lowengrub, (2004) Two- and three-dimensional equilibrium morphology of a misfitting particle and the Gibbs-Thomson effect, Acta Meter. 52, 5829--5843. pdf
  9. X. Li, J. S. Lowengrub, Q. Nie, V. Cristini and P. H. Leo (2003) Microstructural evolution in three-dimensional inhomogeneous elastic media, Metal. Trans. 34A, 1421--1431. pdf