Computational math: Assignment 2

Thanks Ting Gao’s support for this HW solutions.

5.2 Using the SVD, prove that any matrix an $\mathbb{C}^{m \times n}$ is the limit of a sequence of matrices of full rank. In other words, prove that the set of full-rank matrices is a dense subset of $\mathbb{C}^{m \times n}$. Use the 2-norm for your proof.

Proof. Let the SVD of an arbitrary matrix $A_{m \times n}$ is

$$A = U \Sigma V^*$$

where $U_{m \times m}$ and $V_{n \times n}$ are unitary matrices.

Suppose that $m \geq n$.

Denote the singular values of A to be $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

Construct a sequence of matrices $\{A_k\}_{k=1}^{\infty}$ as follows:

$$A_k = U \Sigma_k V^*$$

where

$$\Sigma_k = \begin{bmatrix} \sigma_1 + \frac{1}{k} & & \\ & \sigma_2 + \frac{1}{k} & \\ & & \ddots \\ & & & \sigma_n + \frac{1}{k} \end{bmatrix} \in \mathbb{C}^{m \times n}.$$

It’s obvious to see that for any $k \in \mathbb{N}$, we have

$$\text{rank}(A_k) = \text{rank}(U \Sigma_k V^*) = \text{rank}(\Sigma_k) = n.$$

Hence, $\{A_k\}_{k=1}^{\infty}$ are a set of full-rank matrices.

Since

$$\|A - A_k\|_2 = \|U(\Sigma - \Sigma_k)V^*\|_2 = \|\Sigma - \Sigma_k\|_2 = \sqrt{\rho((\Sigma - \Sigma_k)^*(\Sigma - \Sigma_k))} = \frac{1}{k}.$$

We have, $\|A - A_k\|_2 \to 0$ as $k \to 0$, which implies that the set of full-rank matrices is a dense subset of $\mathbb{C}^{m \times n}$. \square
5.3 Consider the matrix

\[A = \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix}. \]

(a) Determine, on paper, a real SVD of \(A \) in the form \(A = U \Sigma V^T \). The SVD is not unique, so find the one that has the minimal number of minus signs in \(U \) and \(V \).

(b) List the singular values, left singular vectors, and right singular vectors of \(A \). Draw a careful, labeled picture of the unit ball in \(\mathbb{R}^2 \) and its image under \(A \), together with the singular vectors, with the coordinates of their vertices marked.

(c) What are the \(1-, \ 2-, \ \infty- \) and Frobenius norms of \(A \)?

(d) Find \(A^{-1} \) not directly, but via the SVD?

(e) Find the eigenvalues of \(\lambda_1, \lambda_2 \) of \(A \).

(f) Verify that \(\det A = \lambda_1 \lambda_2 \) and \(|\det A| = \sigma_1 \sigma_2 \).

(g) What is the area of the ellipsoid onto which \(A \) maps the unit ball of \(\mathbb{R}^2 \)?

Solution:

(a)

\[A^*A = \begin{bmatrix} -2 & 11 \\ 10 & 5 \end{bmatrix} \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix} = \begin{bmatrix} 104 & -72 \\ -72 & 146 \end{bmatrix}. \]

Since \(A^*A = V(\Sigma^*\Sigma)V^* \) and the eigenvalues of \(A^*A \) are 200, 50, the singular values of \(A \) are

\[\sigma_1 = 10\sqrt{2}, \ \sigma_2 = 5\sqrt{2}. \]

To find \(U \) and \(V \), we need to calculate the eigenvectors of \(AA^* \) and \(A^*A \). Hence,

\[U = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}, \quad V = \begin{bmatrix} -\frac{3}{4} & \frac{1}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}. \]

Therefore, the real SVD of \(A \) with minimal number of minus signs in \(U \) and \(V \) is

\[A = U \Sigma V^* = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} -\frac{3}{4} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}. \]

(b) The singular values of \(A \) are \(\sigma_1 = 10\sqrt{2}, \ \sigma_2 = 5\sqrt{2} \).

The left singular vectors of \(A \) are

\[\begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix}, \quad \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}. \]
The right singular vectors of A are
\[
\begin{bmatrix}
-\frac{3}{4} \\
\frac{1}{4}
\end{bmatrix}, \begin{bmatrix}
0 \\
1
\end{bmatrix}
\] (c)
\[
\|A\|_1 = \max_{1 \leq j \leq 2} \sum_{i=1}^{2} |a_{ij}| = \max\{12, 16\} = 16.
\]
\[
\|A\|_2 = \sqrt{\rho(A^*A)} = 10\sqrt{2}.
\]
\[
\|A\|_{\infty} = \max_{1 \leq i \leq 2} \sum_{j=1}^{2} |a_{ij}| = \max\{13, 15\} = 15.
\]
\[
\|A\|_F = \sqrt{\text{tr}(A^*A)} = \sqrt{250} = 5\sqrt{10}.
\]
(d) $A^{-1} = (U\Sigma V^*)^{-1} = V\Sigma^{-1}U^* = \begin{bmatrix}
0.05 & -0.11 \\
0.1 & -0.02
\end{bmatrix}$.
(e) The eigenvalues of A are $\lambda_1 = \frac{3 + \sqrt{391}}{2}$ and $\lambda_2 = \frac{3 - \sqrt{391}}{2}$.

(f) To find λ_1 and λ_2, let’s suppose that $\det(\lambda I - A) = 0$. That is to say,
\[
\lambda^2 - \text{trace}(A)\lambda + \det A = 0.
\]
Hence, it is easy to see that $\lambda_1 \lambda_2 = \det A$.
For arbitrary unitary matrix U, we have $\det(UU^*) = \det U \cdot \det U^* = 1$, hence $\det U = \det U^* = \pm 1$. Therefore, we have
\[
(\det A)^2 = \det A^* \cdot \det A = \det(A^*A) = \det(V\Sigma^*\Sigma V^*) = \det V \cdot \det(\Sigma^*\Sigma) \cdot \det V^*.
\]
Thus,
\[
|\det A| = \sqrt{\det(\Sigma^*\Sigma)} = \sqrt{\sigma_1^2 \sigma_2^2} = \sigma_1 \sigma_2.
\]
(g) The area of the ellipsoid is
\[
\pi \sigma_1 \sigma_2 = \pi \cdot 10\sqrt{2} \cdot 5\sqrt{2} = 100\pi.
\]
6.4 Consider the matrix
\[
A = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
1 & 0
\end{bmatrix}.
\]
What is the orthogonal projector \(P \) onto \(\text{range}(A) \), and what is the image under \(P \) of the vector \((1, 2, 3)^*\)?

Solution:
The orthogonal projector \(P \) onto \(\text{range}(A) \) is
\[
P = A(A^*A)^{-1}A^* = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.
\]
Hence,
\[
P = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}.
\]

6.5
Let \(P \in \mathbb{C}^{m \times m} \) be a nonzero projector. Show that \(\| P \|_2 \geq 1 \), with equality if and only if \(P \) is an orthogonal projector.

Proof. Since \(P \) is a nonzero projector, we have \(P = P^2 \) and \(\| P \|_2 \neq 0 \). Then, based on Cauchy-Schwarz inequality, we have
\[
\| P \|_2 = \| P^2 \|_2 \leq \| P \|_2^2.
\]
Hence, \(\| P \|_2 \geq 1 \).

If \(P \) is an orthogonal projector, then \(P^* = P \). Suppose \(P \) has the SVD of the form \(P = U\Sigma V^* \), where \(UU^* = VV^* = I \).

Hence,
\[
\| P \|_2 = \| P^2 \|_2 = \| PP^* \|_2 = \| \Sigma \Sigma^* \|_2 = \sigma_1^2,
\]
where \(\sigma_1 \) is the largest singular value of \(\Sigma \).

Since \(\| P \|_2 = \| \Sigma \|_2 = \sigma_1 > 0 \). We have \(\sigma_1^2 = \sigma_1 \). Therefore, \(\sigma_1 = 1 \). i.e., \(\| P \|_2 = 1 \).

Assume that the projector \(P \) is not orthogonal. i.e., \(\text{range}(P) \) is not perpendicular to \(\text{range}(I - P) \). Then, we can find a vector \(a \) such that \(Pa \neq a \) and \(a \perp \text{range}(I - P) \).

Hence,
\[
\| Pa \|_2 = \| a + (P - I)a \|_2 > \| a \|_2.
\]
Therefore,
\[
\| P \|_2 = \sup_{\| a \|_2 = 1} \| Pa \|_2 > \sup_{\| a \|_2 = 1} \| a \|_2 = 1.
\]
7.1 Consider matrix

\[B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}. \]

Using any method you like, determine reduced and full QR factorizations \(B = \hat{Q}\hat{R} \) and \(B = QR \).

Solution: Rewrite \(B \) as \(B = [b_1 \ b_2] \), where

\[b_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \]

which are linearly independent. Hence,

\[q_1 = \frac{b_1}{\|b_1\|} = \begin{bmatrix} \sqrt{2}/2 \\ 0 \\ \sqrt{2}/2 \end{bmatrix}, \]

\[q_2 = \frac{b_2 - (q_1^*b_2)q_1}{\|b_2 - (q_1^*b_2)q_1\|} = \frac{\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - \sqrt{2} \begin{bmatrix} \sqrt{2}/2 \\ 0 \\ \sqrt{2}/2 \end{bmatrix}}{\sqrt{3}} = \begin{bmatrix} \sqrt{3}/3 \\ \sqrt{3}/3 \\ -\sqrt{3}/3 \end{bmatrix}. \]

Hence,

\[B = \hat{Q}\hat{R} = [q_1 \ q_2] \begin{bmatrix} \|b_1\| & q_1^*b_2 \\ 0 & \|b_2 - (q_1^*b_2)q_1\| \end{bmatrix} = \begin{bmatrix} \sqrt{2}/2 & \sqrt{3}/3 & \sqrt{6}/6 \\ 0 & \sqrt{3}/3 & -\sqrt{6}/6 \\ \sqrt{2}/2 & \sqrt{3}/3 & -\sqrt{6}/6 \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \\ 0 \end{bmatrix}. \]

When finding \(Q \), we need to find another vector \(q_3 \) satisfying \(q_1^*q_3 = 0, q_2^*q_3 = 0 \) and \(\|q_3\| = 1 \). Hence, we have \(q_3 = [\sqrt{\frac{\pi}{6}} - \sqrt{\frac{\pi}{6}} - \sqrt{\frac{\pi}{6}}]^T \). Therefore, the full QR factorization is

\[B = QR = \begin{bmatrix} \sqrt{2}/2 & \sqrt{3}/3 & \sqrt{6}/6 \\ 0 & \sqrt{3}/3 & -\sqrt{6}/6 \\ \sqrt{2}/2 & \sqrt{3}/3 & -\sqrt{6}/6 \end{bmatrix}. \]

7.5 Let \(A \) be an \(m \times n \) matrix \((m \geq n) \), and let \(A = \hat{Q}\hat{R} \) be a reduced QR factorization.

(a) Show that \(A \) has rank \(n \) if and only if all the diagonal entries of \(\hat{R} \) are nonzero.

(b) Suppose \(\hat{R} \) has \(k \) nonzero diagonal entries for some \(k \) with \(0 \leq k \leq n \). What does this imply about the rank of \(A \)?
Proof. Let’s first denote that

\[A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}, \quad \hat{Q} = \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix}, \quad \hat{R} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_{nn} \end{bmatrix}. \]

Using the induction method to show the proof of (a) and (b), we only need to show that if \(r_{kk} \neq 0 \) then

\[\text{rank}(A_k) \geq \text{rank}(A_{k-1}) + 1, \]

where

\[A_k := (a_1|\cdots|a_k). \]

Combing the formula

\[a_k = \sum_{j=1}^{k-1} r_{jk}q_j + r_{kk}q_k, \quad k = 1, \ldots, n, \]

we have

\[a_k \in \text{span}\{q_1, \cdots, q_{k-1}, q_k\}, \]

but

\[a_1, \cdots, a_{k-1} \in \text{span}\{q_1, \cdots, q_{k-1}\}. \]

It implies that

\[a_k \notin \text{span}\{a_1, \cdots, a_{k-1}\}. \]

Thus

\[\text{rank}(A_k) \geq \text{rank}(A_{k-1}) + 1. \]

Therefore

\[\text{rank}(A) = n, \]

when all the diagonal entries of \(\hat{R} \) are nonzero, and

\[\text{rank}(A) \geq k, \]

when \(\hat{R} \) has \(k \) nonzero diagonal entries.

\[\square \]

8 Prove \(P_j = P_{\perp q_{j-1}} \cdots P_{\perp q_2} P_{\perp q_1}, \quad j = 2, 3, \ldots, n. \)
Proof. Since

\[
P_j = I - \begin{bmatrix} q_1 & \cdots & q_{j-1} \end{bmatrix} \begin{bmatrix} q_1^* \\ \vdots \\ q_{j-1}^* \end{bmatrix} = I - \sum_{i=1}^{j-1} q_i q_i^*.
\]

and

\[
\prod_{i=1}^{j-1} P_{q_i} = \prod_{i=1}^{j-1} (I - q_i q_i^*) = I - q_{j-1} q_{j-1}^* - \cdots - q_1 q_1^*
\]

for \(q_i \perp q_j (i \neq j) \), i.e., \(q_i q_i^* q_j q_j^* = 0 (i \neq j) \) (This is a zero matrix). Therefore,

\[
P_j = P_{q_{j-1}} \cdots P_{q_2} P_{q_1}.
\]