General Solution to a Linear Homogeneous First Order System of ODEs with Constant Coefficients

Consider the system of DEs:

\[X'(t) = A X(t) \] \((*) \)

where \(A \) is a real constant \(n \times n \) matrix.

It will have solutions of the form:

\[X(t) = e^{\lambda t} K \]

where \(\lambda \) is an eigenvalue of the coefficient matrix \(A \).

A complete description of the \(n \times 1 \) column vector \(K \) is given by the following three theorems.

I. Matrix \(A \) has all Distinct Real Eigenvalues

Theorem 1 Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be \(n \) real, distinct eigenvalues of \(A \) and let \(K_1, K_2, \ldots, K_n \) be corresponding eigenvectors. Then the general solution to \((*) \) on \((-\infty, \infty) \) is given by:

\[X(t) = c_1 e^{\lambda_1 t} K_1 + c_2 e^{\lambda_2 t} K_2 + \ldots + c_n e^{\lambda_n t} K_n \]

II. Matrix \(A \) has Complex Eigenvalues

Suppose that \(\lambda = \alpha + i \beta \), \(K = R + i S \) is an eigenpair for the matrix \(A \), where \(R \), \(S \) denote real, constant \(n \times 1 \) vectors. Then a complex-valued solution to \((*) \) is given by

\[X(t) = e^{\alpha t} K = e^{\alpha t} (\cos \beta t + i \sin \beta t) R + i \sin \beta t) S \]

\[= e^{\alpha t} \{ [\cos \beta t] R - [\sin \beta t] S \} + i [\cos \beta t] S + [\sin \beta t] R \} \]

We call \(X_1(t) = e^{\alpha t} [\cos \beta t] R - [\sin \beta t] S \) the **real part** of \(X(t) \) and \(X_2(t) = e^{\alpha t} [\cos \beta t] S + [\sin \beta t] R \) the **imaginary part** of \(X(t) \).

Lemma Let \(X(t) = X_1(t) + i X_2(t) \) be a complex-valued solution to the system \((*) \). Then both \(X_1(t) \) and \(X_2(t) \) are real-valued solutions of \((*) \).

Proof Since \(\frac{d}{dt} [X_1(t) + i X_2(t)] = A [X_1(t) + i X_2(t)] \), we have

\[X_1'(t) + i X_2'(t) = AX_1(t) + i AX_2(t) \]

Now equating the real and imaginary parts of this equality, we find

\[X_1'(t) = AX_1(t) \quad \text{and} \quad X_2'(t) = AX_2(t) \]

as required.

This discussion helps to motivate the following result.
\textbf{Theorem 2} \ If \ \(\lambda = \alpha + i \beta \) \ is a complex-valued eigenvalue of \(A \) \ and \(K = R + iS \) \ is an associated eigenvector then

\[X_1(t) = e^{\alpha t} \left[(\cos \beta t) R - (\sin \beta t) S \right] \] \quad \text{and} \quad \[X_2(t) = e^{\alpha t} \left[(\cos \beta t) S + (\sin \beta t) R \right] \]

are linearly independent real-valued solutions of \((*)\) on \((-\infty, \infty)\).

\section*{III. Matrix \(A \) \ has Repeated Eigenvalues}

\textbf{Theorem 3}

\textbf{Case 1} \ Suppose the \(n \times n \) matrix \(A \) \ has less than \(n \) distinct eigenvalues, however, there still exists a set of \(n \) linearly independent eigenvectors. Then the general solution to \((*)\) consists of \(n \) solutions of the form \(X(t) = e^{\lambda t} K \) \ where \(\lambda, K \) \ is an eigenpair.

\textbf{Case 2} \ Suppose that \(A \) \ has only \(k < n \) linearly independent eigenvectors. Then

\(\text{(i)} \) the general solution to \((*)\) includes \(k \) solutions of the form

\[X(t) = e^{\lambda t} \] \ where \(\lambda, K \) \ is an eigenpair.

\(\text{(ii)} \) To find additional solutions, pick an eigenvalue \(\lambda \) and find all vectors \(V \)

such that \((A - \lambda I)^2 V = 0 \) \ but \((A - \lambda I) V \neq 0 \).

For each such \(V \) \ it follows that

\[X(t) = e^{\lambda t} \left[I + t (A - \lambda I) \right] V \] \ is another solution.

\(\text{(iii)} \) If we still do not have enough solutions, we find all vectors \(V \)

for which \((A - \lambda I)^3 V = 0 \) \ but \((A - \lambda I)^2 V \neq 0 \).

For each such \(V \) \ it follows that

\[X(t) = e^{\lambda t} \left[I + t (A - \lambda I) + \frac{t^2}{2!} (A - \lambda I)^2 \right] V \] \ is also a solution.

\(\text{(iv)} \) We continue in this manner until we obtain \(n \) linearly independent solutions.

Note: In regards to Case 2 it can be shown that if \(\lambda_o \) \ is an eigenvalue of multiplicity \(k \) \ for matrix \(A \), i.e. \((\lambda - \lambda_o)^k \) \ is a factor of \(\det(A - \lambda I) \), then there exists an integer \(N \leq k \) \ such that \((A - \lambda I)^N V = 0 \) \ has at least \(k \) \ linearly independent solutions. Thus, corresponding to the eigenvalue \(\lambda_o \), we can compute \(k \) \ linearly independent solutions to \((*)\) each having the form

\[X(t) = e^{\lambda_o t} \left[I + t (A - \lambda_o I) + \frac{t^2}{2!} (A - \lambda_o I)^2 + \cdots + \frac{t^{(N-1)}}{(N-1)!} (A - \lambda_o I)^{(N-1)} \right] V \]