Ptolemy's Theorem

Ptolemy’s Theorem is a relation in Euclidean geometry between the four sides and two diagonals of a **cyclic quadrilateral** (i.e., a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus).

If the quadrilateral is given with its four vertices A, B, C, and D in order, then the theorem states that:

$$|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |AD|$$

This relation may be verbally expressed as follows:

If a quadrilateral is inscribed in a circle then the sum of the products of its two pairs of opposite sides is equal to the product of its diagonals.

Proof

Geometric proof of Ptolemy’s Theorem

1. Let $ABCD$ be a cyclic quadrilateral.
2. Note that on the chord BC, the inscribed angles $\angle BAC = \angle BDC$,
 and on AB, $\angle ADB = \angle ACB$.
3. Construct K on AC such that $\angle ABK = \angle CBD$;

 [Note that: $\angle ABK + \angle CBK = \angle ABC = \angle CBD + \angle ABD \Rightarrow \angle CBK = \angle ABD$.]

4. Now, by common angles $\triangle ABK$ is similar to $\triangle DBC$, and likewise $\triangle KBC \sim \triangle ABD$.
5. Thus, \(\frac{|AK|}{|AB|} = \frac{|DC|}{|DB|} \) and \(\frac{|KC|}{|BC|} = \frac{|AD|}{|BD|} \) due to the similarities noted above:

\[
\begin{align*}
\triangle ABK & \sim \triangle DBC \\
\triangle KBC & \sim \triangle ABD
\end{align*}
\]

1. So \(|AK| \cdot |DB| = |AB| \cdot |DC|\), and \(|KC| \cdot |BD| = |BC| \cdot |AD|\);
2. Adding, \(|AK| \cdot |DB| + |KC| \cdot |BD| = |AB| \cdot |DC| + |BC| \cdot |AD|\);
3. Equivalently, \((|AK| + |KC|) \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |AD|\);
4. But \(|AK| + |KC| = |AC|\), so
5. \(|AC| \cdot |BD| = |AB| \cdot |CD| + |BC| \cdot |DA|\); Q.E.D.

Some Corollaries to Ptolemy’s Theorem

CORROLARY 1:

Given an equilateral triangle \(\triangle ABC \) inscribed in a circle and a point \(Q \) on the circle. Then the distance from point \(Q \) to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.

In the figure, it follows that

\[
q = p + r
\]

CORROLARY 2:

In any regular pentagon the ratio of the length of a diagonal to the length of a side is the golden ratio, \(\varphi \).

In the figure, it follows that

\[
\varphi = \frac{b}{a}
\]