ROTATIONS AND TRANSLATIONS OF GRAPHS IN THE \(xy \)-PLANE

THEOREM: The polar graph of \(G (r, \theta - \alpha) = 0 \) in the \(xy \)-plane is that of the equation \(G (r, \theta) = 0 \) only rotated about \(O \) thru the angle \(\alpha \).

In the figure, the points \(P, Q, R, S \) on \(G (r, \theta) = 0 \) have the polar coordinates:

\[
\begin{align*}
P &= [r_0, \frac{\pi}{2}] \implies P' = [r_0, \frac{\pi}{2} + \alpha] \\
Q &= [r_0, \theta_Q] \implies Q' = [r_0, \theta_Q + \alpha] \\
R &= [r_0, \theta_R] \implies R' = [r_0, \theta_R + \alpha] \\
S &= [r_1, \frac{3\pi}{2}] \implies S' = [r_1, \frac{3\pi}{2} + \alpha]
\end{align*}
\]

THEOREM: The rectangular graph of \(F (x - h, y - k) = 0 \) in the \(xy \)-plane is that of \(F (x, y) = 0 \) only translated \(h \) units horizontally and \(k \) units vertically.

In the figure, the points \(P, Q, R, S \) have the rectangular coordinates:

\[
\begin{align*}
P &= (0, d) \implies P' = (h, d + k) \\
Q &= (-a, b) \implies Q' = (-a + h, b + k) \\
R &= (a, b) \implies R' = (a + h, b + k) \\
S &= (0, c) \implies S' = (h, c + k)
\end{align*}
\]
I. Rotation of the parabola: \(y^2 = 4px \) by 60° followed by a translation \(h \) units rightward and \(k \) units upward.

II. Rotation of the lemniscate: \(y^2 = x^2 - x^4 \) by 60° followed by a translation 3 units rightward and 2 units upward.