RECIPIENT PROBLEM SET 1

1. Let \(f(x) = x + \cos x \) for \(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \).
 (a) Show that \(f \) is always increasing on its given domain.
 (b) Determine the range of \(f \).
 (c) Find the value of \(f^{-1}(1) \).
 (d) Find the value of \((f^{-1})'(1) \).

2. Let \(f(x) = \frac{1 - \sqrt{x}}{1 + \sqrt{x}} \).
 (a) Find a formula for \(f^{-1}(x) \).
 (b) Find \((f^{-1})'(x) \) by differentiating the formula from part (a).
 (c) Find \(f'(x) \) using the Quotient Rule.
 (d) Find \((f^{-1})'(x) \) using Theorem 7:

 \[
 (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}
 \]

3. Use the graph of \(f \) shown at the right to:
 (a) sketch the graphs of
 \(g(x) = f^{-1}(x) \)
 \(h(x) = \frac{1}{f(x)} \)
 \(h^{-1}(x) \)
 (b) state the domain of each of the functions: \(f, g, h \) and \(h^{-1} \).

4. Use the Laws of Logarithms to expand the quantity:
 (a) \(\ln \sqrt{a (b^2 + c^2)} \)
 (b) \(\ln \left[\frac{3x^2}{(x+1)^5} \right] \)
 (c) \(\ln \left(\frac{x y^3}{z^6} \right) \).

5. Differentiate the function:
 (a) \(y = \frac{1 + \ln t}{1 - \ln t} \)
 (b) \(y = \ln (x^4 \sin^2 x) \).

6. Differentiate and state the domain of \(f \):
 (a) \(f(x) = \sqrt{1 - \ln x} \)
 (b) \(y = \ln (\ln x) \)
7. Use logarithmic differentiation to find \(\frac{dy}{dx} \):

(a) \(y = \frac{(x+1)^3(5-2x)^5}{x^2 + 4} \)
(b) \(y = (x^2 + 1)(x^2 + 2)(x^2 + 3)(x^2 + 4) \)

8. Integrate the function:

(a) \(\int \frac{1}{x \ln x} \, dx \)
(b) \(\int \frac{1}{(\ln x)^2} \, dx \)
(c) \(\int \frac{\cos x}{2 + \sin x} \, dx \).

9. Let \(y = e^{-x^3} \) for \(0 \leq x \leq 1 \).

Use the Disc Method to find the volume obtained by rotating the region under the graph of the curve \(y = e^{-x^3} \) about the \(y \)-axis.

10. Solve the equation for \(x \).

(a) \(e^{(2x+3)} - 7 = 0 \)
(b) \(\ln(5 - 2x) = -3 \)
(c) \(\ln(\ln x) = 1 \)
(d) \(7e^x - e^{2x} = 12 \).

11. Differentiate:

(a) \(y = \frac{e^x}{1 + x} \)
(b) \(y = e^x \ln x \)
(c) \(y = \cos(e^{7x}) \)
(d) \(y = \sqrt{1 + xe^{-2x}} \).

12. Evaluate the integral:

(a) \(\int \frac{e^{(1/x)}}{x^2} \, dx \)
(b) \(\int e^x \sin(e^x) \, dx \)
(c) \(\int \frac{e^x}{1 + e^x} \, dx \)
(d) \(\int \frac{e^{2x}}{1 + e^x} \, dx \).