B. Use Cauchy's FE, \(f(x+y) = f(x) + f(y) \), or another FE on this page to obtain all continuous solutions.

1. \(g(x+y) = g(x) g(y) \), for all \(x \) and \(y \)
2. \(h(xy) = h(x) h(y) \), for all \(x > 0 \) and \(y > 0 \)
3. \(g \left(\frac{x+y}{2} \right) = \frac{g(x) + g(y)}{2} \), for all \(x \) and \(y \).
 (Hint: let \(f(x) = g(x) - g(0) \).) This is Jensen's FE.
 Interpret the FE and its solutions geometrically.
4. \(h(x+y) = h(x) + h(y) + h(x) h(y) \), for all \(x \) and \(y \)
5. \(f(xy) = x f(y) + y f(x) \), for all \(x > 0 \) and \(y > 0 \).
 (Hint: let \(g(x) = f(x)/x \).)
6. \(f(x) + g(y) = g(x+y) \), for all \(x \) and \(y \)
7. \(f(x+y) + f(x-y) = 2f(x) \), for all \(x \) and \(y \)
 (Hint: \(x = \frac{1}{2} (x+y+x-y) \).)
8. \(q(u+v) = q(u^2) + q(v^2) \), for all \(u \) and \(v \)
9. \(g(\sqrt{s^2+t^2}) = g(s) g(t) \), for all \(s \) and \(t \)

C. Find families of non-constant solutions.

1. \(f(x+y) + f(x-y) = 2f(x) f(y) \), for all \(x \) and \(y \)
2. \(q(x+y) + q(x-y) = 2q(x) + 2q(y) \), for all \(x \) and \(y \)