2. Transformation to a distributed linear system

Define

\[D(Q(t)) = \left\{ f \in W^2(-\tau_r, 0; U) | f(0) = 0 \right\} \]

and

\[B = (\lambda (Q(t)) - \lambda)u \in \mathbb{C} \]

Another operator \(T_X \) is defined similarly. We assume:

\\((A1)) \quad (Q(t), X, U) \) generates a regular system on the state space \(D^2(-\tau_r, 0; U) \), the control space \(X \) and the observation space \(X \).

\\((A2)) \quad (Q(t); X, U) \) generates a regular system on the state space \(D^2(-\tau_r, 0; U), \) the control space \(X \) and the observation space \(X \).

Define the operators:

\[A_{\lambda, X} = (A + \lambda)^{-1}(\lambda I - B) \]

\[D(A_{\lambda, X}) = \mathbb{C} \times D^2(-\tau_r, 0; U) \]

and

\[B = (0 \in \mathbb{C}) \]

where

\[A_{\lambda, X} = A - \lambda I \]

\[D(A_{\lambda, X}) = \mathbb{C} \times D^2(-\tau_r, 0; U) \]

and

\[B = (0 \in \mathbb{C}) \]

Now if we set \(\xi = (\xi(t), \xi_u, \xi_{tu}) \) thenAffected by \((2), \) the result is equivalent to

\[\left\{ \xi(t) = A_{\lambda, X}(t) + B_0(t) \right\} \]

The following result describes the form of the stabilizing operator for the delay system (2).

Theorem 3. Assume the conditions \((A1) \) and \((A2) \) are satisfied. If \(\xi \in L^2(A_{\lambda, X}) \), the delay system (2) then it is of the form

\[(C \in \mathbb{C}, D) \]

We recall that if \(T(\lambda) \) is compact for \(\lambda > 0 \) then \(\delta_{\lambda} \) is the generator of an eventually compact semigroup. Moreover, the unstable set

\[\sigma^+ = \{ \lambda \in \sigma(A_{\lambda, X}) \mid \text{Re} \lambda \geq 0 \} \]

is finite, which is denoted by \(\sigma^+ = \{ \lambda_1, \lambda_2, \ldots, \lambda_r \} \). For \(\lambda_1 \in \sigma^+, \) if \(i = 1, 2, \ldots, r \), we can set the dimension of Ker\(A_{\lambda_i} \) as

\[d_i = \text{dim}\Sigma_{\lambda_i} \]

and the basis of Ker\(A_{\lambda_i} \) by \(\{ \phi_{i1}, \phi_{i2}, \ldots, \phi_{im} \} \). Therefore, we extend a generator of an eventually compact semigroup to \(\delta_{\lambda} \) as an admissible feedback operator.

5. A necessary condition

We now focus on the characterization of feedback stabilizability of the delay system (2). For each \(\lambda \in \mathbb{C} \) we redefine

\[\mathbb{C} \times A_{\lambda, X} \]

The closed loop system associated with \(\mathbb{C} \times A_{\lambda, X} \) is extended to a \(C \times \)–semigroup \(V \) respectively.

\begin{align*}
\text{Conditions on feedback stabilization of systems with state and input delays in Banach spaces} \\
\text{Said Hadd and Qing-Chang Zhong} \\
\text{Department of Electrical Engineering and Electronics} \\
\text{The University of Liverpool}
\end{align*}

8. Examples

Example 1. Consider the system (8) with

\[A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \quad P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}, \quad P_2 = \begin{pmatrix} p_{21} & p_{22} \end{pmatrix} \]

Then, \(\Delta(\lambda) = \lambda I - A, \sigma(A) = \{ -1, 1 \} \) and \(\sigma^+ = \{ 1 \} \). Hence

\[\text{Ker}(\Delta(\lambda)) = T(\lambda) = \sigma(\lambda) \]

which implies that \(d_1 = \text{dim}\Sigma_{\lambda_i} = 1 \). Now (9) is reduced to

\[\text{Rank}(\begin{pmatrix} p_{11} & p_{12} \\ 2p_{11} & 2p_{12} \end{pmatrix}) \]

\[= \text{Rank}(2p_{11} + p_{12} + e^{-\tau_r}(2p_{11} + 2p_{12})) = 1 \]

Hence, the delay system is stable if and only if \(\text{Rank}(2p_{11} + p_{12} + e^{-\tau_r}(2p_{11} + 2p_{12})) \neq 1 \). In other words, the system is not stabilizable

\[r = \text{Rank}(2p_{11} + p_{12} + e^{-\tau_r}(2p_{11} + 2p_{12})) \]

Example 2. Consider the system (8) with

\[A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad P = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad P_2 = 0 \]

Here

\[\Delta(\lambda) = \begin{pmatrix} \lambda & -2 \\ -e^{-\tau_r} & \lambda \end{pmatrix} \]

and

\[\text{Ker}(\Delta(\lambda)) = \text{span}\{ 1 \} \text{ and } \text{Ker}(\Delta(\lambda)) = \text{span}\{ 1 \} \]

Now we have

\[\text{Rank}(\begin{pmatrix} \lambda & -2 \\ -e^{-\tau_r} & \lambda \end{pmatrix}) = 0 \]

Thus, \(\lambda_0 \) is a stabilizable eigenvalue but \(\lambda_2 = 1 \) is not.

Acknowledgement

This work was supported by the EPSRC, UK under grant No. EP/C500951/1.