In Situ EXAFS-Derived Mechanism of Highly Reversible Tin Phosphide/Graphite Composite Anode for Li-Ion Batteries

Yujia Ding1*, Zhe-Fei Li2, Elena V. Timofeeva3, Carlo U. Segre1

1. Department of Physics & CCSRRI, Illinois Institute of Technology;
2. Center for Electrochemical Engineering Research, Chemical and Biomolecular Engineering Department, Ohio University;

*yding12@hawk.iit.edu

Synthesis and Electrochemistry of Sn₄P₃/Graphite

Sn₄P₃ is a promising conversion-type anode material for LIB with a theoretical capacity of 1255 mAh/g.

- **Red phosphorus**
- **Molar ratio: 4:3**

In Situ EXAFS Experiment

EXAFS data were collected at the Sn K-edge (29.2 keV) in fluorescence mode while the in situ coin cell was cycled galvanostatically, at MRCAT APS Sector 10-ID beamline.

- XRD patterns of as-synthesized Sn₄P₃/graphite composite
- All the peaks match the Sn₄P₃ crystal structure, except the "***" peak from the mounting clay in the sample holder

Mechanism of Improved Cycling Performance

[X(R)] plots of Sn₄P₃/graphite at OCV (black), lithiated (blue), and delithiated (red) states in the 3rd cycle

Black: Crystal structure of Sn₄P₃; High Sn-O peak is from particle surfaces or an amorphous oxide phase; **Red:** Three high intensity peaks from amorphous phase; Never returns to the original crystal structure; **Blue:** Low intensity peaks from LiSn alloys.

- Minor changes between the 3rd lithiated and delithiated states
- No amorphous Sn₄P₃ phase formed in pure Sn₄P₃

Dynamic snapshot of [X(R)] in the entire 3rd cycle

- Amorphous Sn₄P₃ phase and small metallic Sn clusters is reversibly formed in the delithiated states after the 2nd cycle, and completely decomposed in the later lithiated states. The Sn₄P₃ phase possibly exist in a tetrahedral configuration that contains only first shell P neighbors.
- The 3rd and 4th lithiated states show a mixed environment with LiSn alloys and remaining metallic Sn clusters. All Li atoms are extracted from the alloys in delithiated states.
- The gradual capacity loss after 100 cycles is due to reduced Sn₄P₃ phase and larger Sn clusters after long-term cycling.

Capacities comparison between in situ coin cell (black) and regular coin cell (red)

- In situ capacities reached about 80% of the regular cell in the 3rd cycle;
- Low in situ capacities are due to lower pressure and poor electrical contact in the Kapton window used for data collection.

In Situ EXAFS-Derived Mechanism of High Reversibility Tin Phosphide/Graphite

The Sn₄P₃/graphite composite (red) exhibits excellent electrochemical performance compared to pure Sn₄P₃ (blue), with a reversible capacity of 651 mAh/g in the 100th cycle.

- Sn₄P₃ Electrodes: 50% active materials, 10% CMC binder, 40% SuperP
- Sn₄P₃/Graphite Electrodes: 80% active materials, 10% CMC binder, 10% SuperP
- Electrolytes: 1.2 M LiPF₆ in EC/DMC 3:7 with 0.2% FEC

Acknowledgement:

This work was supported by the Department of Energy and the MRCAT member institutions. Use of the Argonne National Laboratory Advanced Photon Source was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.