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ABSTRACT
In this paper, we study the capacity of a large-scale random wire-
less network for multicast. Assume that n wireless nodes are ran-
domly deployed in a square region with side-length a and all nodes
have the uniform transmission range r and uniform interference
range R > r. We further assume that each wireless node can
transmit/receive at W bits/second over a common wireless chan-
nel. For each node vi, we randomly pick k − 1 nodes from the
other n − 1 nodes as the receivers of the multicast session rooted
at node vi. The aggregated multicast capacity is defined as the to-
tal data rate of all multicast sessions in the network. In this paper
we derive matching asymptotic upper bounds and lower bounds on
multicast capacity of random wireless networks. We show that the
total multicast capacity is Θ(

√
n

log n
· W√

k
) when k = O( n

log n
); the

total multicast capacity is Θ(W ) when k = Ω( n
log n

). Our bounds
unify the previous capacity bounds on unicast (when k = 2) by
Gupta and Kumar [7] and the capacity bounds on broadcast (when
k = n) in [11, 20]. We also study the capacity of group-multicast
for wireless networks where for each source node, we randomly
select k − 1 groups of nodes as receivers and the nodes in each
group are within a constant hops from the group leader. The same
asymptotic upper bounds and lower bounds still hold. For arbitrary
networks, we provide a constructive lower bound Ω(

√
n√
k
· W ) for

aggregated multicast capacity when we can carefully place nodes
and schedule node transmissions.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion, Network topology; G.2.2 [Graph Theory]: Network prob-
lems, Graph algorithms

General Terms
Algorithms, Design, Theory
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1. INTRODUCTION
In wireless ad hoc networks, wireless nodes may cooperate in

routing each others’ packets. Lack of a centralized control of the
functionality and possible node mobility give rise to many chal-
lenging issues at the network layer, the medium access layer, and
physical layer of a wireless ad hoc network. At the network layer,
the main challenging problem is that of routing, which has to deal
with time-varying network topology, possible power-constraints of
wireless nodes, and the characteristics of the wireless channel (such
as unstable, broadcast nature, fading and so on). The choice of
medium access control is also restricted by the fact that the net-
work topology is time-varying, and there is no centralized con-
trol. In the literature, a number of results have been proposed
to use the TDMA, CDMA, FDMA, and the dynamic assignment
of frequency bands to improve the network throughput. Notice
that TDMA has recently been proposed to improve the network
throughput for some networks or partial of the networks [1,23], es-
pecially for static networks. At the physical layer an important is-
sue is the power-control, which has been studied extensively in the
literature. A careful selection of the transmission power of nodes
can not only improve the nodal life, but also improve the spatial
reuse of frequency and consequently possibly improve the network
throughput.

In many applications, e.g., wireless sensor networks, we often
need a rough estimation on the achievable throughput when we
randomly deploy n wireless nodes in a given region. The main
purpose of this paper is to study the asymptotic capacity of large
scale random wireless networks when we choose the best protocols
for all layers. As in the literature, we will mainly consider one type
of networks, large scale random networks, where a large number
of nodes are randomly placed in the deployment region. We will
study the capacity of a given wireless network where the nodes
positions are given a priori, and how the capacity of wireless net-
works scale with the number of nodes in the networks (when given
a fixed deployment region), or scale with the size of the deploy-
ment region (when given a fixed deployment density) for multicast.
We assume that a set of n wireless nodes V = {v1, v2, · · · , vn}
are randomly distributed (with uniform distribution) in a square re-
gion with a side-length a and all nodes have the same transmission
range r. For most results presented in this paper, we assume that
values of a and r are selected such that the resulted network will be
connected with high probability (w.h.p.). The results derived under
this model also imply the same results for the dense model, when
n nodes are distributed in a fixed region (such as a unit square by a
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proper scaling) and the uniform transmission range of all nodes are
selected as the critical transmission range (CTR) to get a connected
network with high probability.

In this paper, we will concentrate on the multicast capacity of
a random wireless network, which generalizes both the unicast ca-
pacity [7] and broadcast capacity [11, 20] for random networks.
Assume that a subset S ⊆ V of ns = |S| nodes will serve as
the source nodes of ns multicast sessions. The most results in this
paper assume that S = V . Each node vi ∈ S has a set of ran-
domly chosen nd = k − 1 destination nodes to which it wishes
to send data at an arbitrary data rate λi. The multicast capacity
of a random network is defined as Λk(n) =

∑n
i=1 λi when there

is a schedule of transmissions such that all multicast flows will be
received by their destination nodes successfully within a finite de-
lay. To describe when a transmission is received successfully by its
intended recipient, we will allow one possible model for a success-
ful one-hop reception: protocol model. We assume that each node
v ∈ V has a fixed constant transmission range r and a fixed con-
stant interference range R > r. A node u can successfully receive
a transmission from another node v with ‖v − u‖ ≤ r iff there is
no other node w such that ‖w − u‖ ≤ R and node w is transmit-
ting simultaneously with node v. Here ‖w − u‖ is the Euclidean
distance between w and u.

We assume the following simple wireless channel model as in the
literature: each wireless node can transmit at W bits/second over a
common wireless channel. For presentation simplicity, we assume
that there is only one channel in the wireless networks. We will see
that it is immaterial to results presented in this paper if the channel
is broken up into several sub-channels of capacity W1, W2, · · · ,
WM bits/second as long as we have

∑M
i=1 Wi = W . As always,

we assume that the packets are sent from node to node in a multi-
hop manner until they reach their final destinations. The packets
could be buffered at intermediate nodes while awaiting for trans-
mission. In this paper, we assume that the buffer is large enough so
packets will not get dropped by any intermediate node. We leave it
as future work to study the scenario when the buffers of intermedi-
ate nodes are bounded by some values. In some results, we assume
that every intermediate node have infinite buffer size. For most of
the results presented here, the delay of the routing is not consid-
ered, i.e., the delay in the worst case could be arbitrarily large for
some results.

Our Main Contributions: We propose two regimes for multi-
cast capacity in terms of k. We derive matching analytical upper
bounds and lower bounds on multicast capacity of a random wire-
less network. Assume that the side-length a of the deployment
square and the transmission range r are selected such that the net-
work is connected almost surely i.e., a

r
= Θ(

√
n

log n
). We show

that the aggregated multicast capacity of n random multicasts is

Λk(n) =

{
Θ(

√
n

log n
· W√

k
) when k = O( n

log n
),

Θ(W ) when k = Ω( n
log n

)
(1)

Our bounds unify the previous capacity bounds on unicast (when
k = 2) by Gupta and Kumar [7] and the capacity bounds on broad-
cast (when k = n) in [11, 20]. Consequently, the per-node multi-
cast capacity λk(n) of n multicast sessions (with k − 1 receivers
per multicast session) is

λk(n) =

{
Θ(

√
1

n log n
· W√

k
) when k = O( n

log n
),

Θ(W
n

) when k = Ω( n
log n

)
(2)

The above capacity bounds are implied by a more general re-
sult for the following network setting there are ns multicast ses-

sions, each with k−1 randomly selected receivers from V , and the
transmission range r and side-length a of the deployment square
satisfying that the resulted random network is connected with high
probability. Generally, when limn→∞ ns · k = ∞, we prove that
the aggregated multicast capacity of ns multicast sessions is

Λk(n) =

{
Θ(a

r
· W√

k
) when k = O(a2

r2 )

Θ(W ) when k = Ω( a2

r2 )
(3)

and the per-source multicast capacity of ns multicast sessions is

λk(n) =

{
min(W, Θ(a

r
· W

ns
√

k
)) when k = O(a2

r2 )

Θ( W
ns

) when k = Ω( a2

r2 )
(4)

We also study the multicast capacity for group-multicast where,
for each source node, we randomly select k− 1 groups of nodes as
receivers and the nodes in each group are within a constant number
of hops from the group leader. We show that the asymptotic mul-
ticast capacity is still Θ(

√
n

log n
· W√

k
) when k = O( n

log n
); and is

Θ(W ) when k = Ω( n
log n

). For multicast in arbitrary networks,

we provide a constructive lower bound Ω(
√

n√
k
· W ) when we can

carefully place nodes and schedule node transmissions.
The rest of the paper is organized as follows. In Section 2 we dis-

cuss in detail the network model and the channel model used in this
paper. In Section 3, we first present some upper-bounds on multi-
cast capacity for random networks. In Section 4, we then present an
efficient method for multicast and prove that the capacity achieved
by this method asymptotically matches the upper-bounds derived
before. In Section 5, we study the multicast capacity bounds for
group-multicast and the multicast capacity bounds for arbitrarily
networks. We review the related results on network capacities in
Section 6 and conclude the paper in Section 7 with the discussion
of some possible future works.

2. NETWORK MODEL
The capacity of random wireless networks was first studied in

a pioneering seminar work by Gupta and Kumar [7]. There are
different approaches to increase the network throughput, such as
reducing the interference, the scheduling on the MAC layer, route
selection on the routing layer, channel assignment if multi-channels
are available, and power control on the physical layer. In this sec-
tion, we first introduce our network system model, then we discuss
in detail the interference models we will use and then define the
problem that we will study in this paper.

We consider large scale random networks. Typically there are
three ways to increase the number of network nodes to infinity.

1. One is to fix the deployment region and then increase the
node density to infinity. This is typically called the dense
model. This model is widely studied, e.g., Gupta and Ku-
mar studied the critical transmission range (CTR) [8] and the
capacity for unicast [7] using this model.

2. Another way is to fix the node density to a given constant and
increase the deployment region to infinity. This is typically
called the extended model. Notice that to get a connected
network with high probability, we also need to increase the
transmission range of nodes. This model is also used by sev-
eral papers to study the CTR or capacity, e.g., [17, 25].

3. The third way is to fix the transmission range of all nodes
to some constant, then increase the node density (asymptot-
ically same as the node degree when the transmission range
is fixed) and the deployment area to increase the number of
nodes in the network. We call this model the constant-range
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model. Assume that n nodes will be deployed. It has been
proved in [24] that the minimum node degree for connectiv-
ity is Θ(log n). This implies that the area of the deployment
region is at most Θ( n

log n
).

In this paper, we will adopt the third model. Notice that our results
presented in this paper actually are immaterial to the model used.
Most results presented in this paper rely on the ratio a

r
where a is

the side-length of the deployment square and r is the transmission
range, where either a or r or both could be a function of n.

In this paper, we assume that there is a set V = {v1, v2, · · · , vn}
of n communication terminals deployed in a region Ω. We mainly
focus the scenario when Ω is a square with side length a. Every
wireless node has a uniform transmission range r such that a node
u can successfully receive the signal sent by node v if and only if
‖u − v‖ ≤ r. The complete communication graph is a undirected
graph G = (V, E), where E is the set of communication links.

To schedule two links at the same time slot, we must ensure that
the schedule will avoid interference. Several different interference
models have been used to model the interferences in wireless net-
works. In this paper, we will mainly focus on the protocol inter-
ference model. We assume that each node vi has a constant inter-
ference range R. Here any node vj will be interfered by the signal
from vk if ‖vk − vj‖ ≤ R and node vk is sending signal to some
node other than vj . In this paper, we always assume that the inter-
ference range R is within a small constant factor of the transmission
range r, i.e., R = Θ(r).

Capacity Definition: We assume that each node vi could serve
as the source node for some multicast. For each node vi, we ran-
domly select k− 1 nodes, say Ui ⊆ V −{vi}, from the remaining
n − 1 nodes as the receivers of multicast session using vi as the
source node. Assume that node vi will send data to these receivers
Ui with a data rate λi. Notice that when the receivers are far away
from the source node, we need multiple intermediate nodes to re-
lay the data for vi. Let λ = (λ1, λ2, · · · , λn−1, λn) be the rate
vector of the multicast data rate of all multicast sessions. Given a
set of ns multicast sessions with the set of source nodes S ∈ V ,
let λS = {λi1 , λi2 , · · · , λins

} be the vector of data rates of all
sources in S. When given a fixed network G = (V, E), where
the node positions of all nodes V , the set of receivers Ui for each
source node vi, and the multicast data rate λi for each source node
vi are all fixed, we first define what is a feasible rate vector λ for
the network G.

DEFINITION 1 (FEASIBLE RATE VECTOR). A multicast rate
vector λ = (λ1, λ2, · · · , λn−1, λn) (or generally λS ) bits/sec is
feasible if there is a spatial and temporal scheme for scheduling
transmissions such that by operating the network in a multi-hop
fashion and buffering at intermediate nodes when awaiting trans-
mission, every node vi can send λi bits/sec average to its chosen
k − 1 destination nodes. That is, there is a T < ∞ such that in
every time interval (with unit seconds) [(i−1) ·T, i ·T ], every node
can send T · λi bits to its corresponding k − 1 receivers.

Given a set S of ns multicast sessions, the total throughput ca-
pacity of such feasible rate vector λS for multicast is defined as
Λk,S(n) =

∑
vi∈S λi. The per node multicast throughput is de-

fined as λk,S(n) =
∑

vi∈S λi

ns
, where k is the total number of nodes

in each multicast session, including the source node. When S is
clear from context, we write Λk,S(n) and λk,S(n) as Λk(n) and
λk(n).

DEFINITION 2 (THROUGHPUT CAPACITY). A total multicast
throughput Λk(n) is feasible for multicast if there is a rate vec-
tor λ = (λ1, λ2, · · · , λn−1, λn) that is feasible and Λk(n) =

∑n
i=1 λi. Given ns sources S , a per node multicast throughput

λk,S(n) bits/sec is feasible if there is a λS = (λi1 , λi2 , · · · , λins−1 , λns)

that is feasible and λk,S(n) =
∑n

i=1 λi

ns
.

DEFINITION 3 (CAPACITY OF RANDOM NETWORKS). The to-
tal multicast capacity of a class of random networks is of order
Θ(g(n)) bits/sec if there are deterministic constants c > 0 and
c < c′ < +∞ such that

lim
n→∞

Pr (Λk(n) = cg(n) is feasible) = 1

lim inf
n→∞

Pr
(
Λk(n) = c′g(n) is feasible

)
< 1

Given ns random sources, we say that the multicast capacity per
node of a class of random networks is of order Θ(f(n)) bits/sec if
there are deterministic constants c > 0 and c < c′ < +∞ such
that

lim
n→∞

Pr (λk(n) = cf(n) is feasible) = 1

lim inf
n→∞

Pr
(
λk(n) = c′f(n) is feasible

)
< 1

Here the probability is taken for all instances of the random net-
works G and all set of sources S with cardinality ns.
Useful Known Results: Throughput this paper, we will repeatedly
use the following results from probability theory literature.

LEMMA 1 (CHEBYSHEV’S INEQUALITY). For a variable X ,

Pr (|X − µ| ≥ A) ≤ Var(X)

A2
,

where µ = E(X), Var(X) is the variance of X , and A > 0.

LEMMA 2 (LAW OF LARGE NUMBERS). Consider n uncor-
related variables Xi, 1 ≤ i ≤ n with same expected value µ =

E(Xi) and variance σ2 = Var(Xi). Let X =
∑n

i=1 Xi

n
. ∀ε > 0,

Pr
(|X − µ| < ε

) ≥ 1− σ2

n · ε2 .

LEMMA 3 (BINOMIAL DISTRIBUTION). Consider n indepen-
dent variables Xi ∈ {0, 1}, p = Pr (Xi = 1), and X =

∑n
i=1 Xi.

Pr (X ≤ ξ) ≤ e
−2(n·p−ξ)2

n , when 0 < ξ ≤ n · p.

Pr (X > ξ) <
ξ(1− p)

(ξ − n · p)2
, when ξ > n · p.

Notations: Throughput this paper, for a continuous region Ω, we
use |Ω| to denote its area; for a discrete set S, we use |S| to denote
its cardinality; for a tree T , we use ‖T‖ to denote its total Euclidean
edge lengths; x →∞ denotes that variable x takes value to infinity.

3. UPPER BOUNDS ON MULTICAST CA-
PACITY FOR RANDOM NETWORKS

3.1 The upper-bound on a
r

We assume that n wireless nodes V with transmission range r
are randomly and uniformly distributed in a square region with side
length a. We first study the asymptotic bound on a/r such that the
resulted network G = (V, E) is connected almost surely, i.e., with
probability going to 1 as n goes to infinity. Notice that for a set of
nodes, the CTR for connectivity is always the length of the longest
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edge of the Euclidean minimum spanning tree (EMST) of this set of
nodes [8,16,17]. Consequently, studying the CTR for connectivity
is equivalent to studying the longest edge of the EMST of a set
V of nodes when V follows a certain distribution such as Poisson
distribution or random uniform distribution.

Assume that n points are distributed uniformly at random in the
2-dimensional square with side length a. Let Mn,a be the random
variable denoting the length of the longest edge of EMST built on
this set of n nodes. Then a simple scaling of the result proved in
[16] shows that, ∀β, limn→∞ Pr

(
nπ · (Mn,a

a
)2 − log n ≤ β

)
=

1

ee−β . Thus, with probability 1

ee−β , we know that the longest edge
length Mn,a, of EMST built on n points distributed in a square

with side-length a, is at most
√

log n+β
nπ

· a. Thus, when β → ∞
and a ≤

√
nπ

log n+β
·r, we know that the longest edge of EMST has

length at most r almost surely. Thus, we have

THEOREM 4. Assume that n nodes, each with transmission range
r, are randomly uniformly deployed in a square region of side
length a. When a

r
≤

√
nπ

log n+β
for β → ∞, the resulted network

G = (V, E) is connected with probability at least 1

ee−β .

For example, we can set a = r
√

n
log n

where β = (π − 1) log n.

3.2 General Techniques
In previous studies [7, 18] of capacity of random networks, a

common approach is to analyze the expected number of hops H(b)
a bit b has to travel and the total number of simultaneous trans-
missions S = O(a2

r2 ) possible in the system. If each source node
generates data at rate λ, the number of bits generated by these ns

sources in time interval T is simply λTns. Thus, the total num-
ber of transmissions of all bits to their destinations is λTnsH(b)
almost surely. Consequently, we have λTnsH(b) ≤ T · S. This
implies that λ = O(a2

r2 · 1
nsH(b)

) = O( n
log n

· 1
nsH(b)

). In [7], for
unicast, Gupta and Kumar essentially used Θ( 1

r
) (assumed a = 1)

as estimation of H(b) and derived Θ( W
ns·r ) as per-node capacity

upper-bound. In [18], for multicast, Shakkottai et al. essentially
used H(b) = Θ(

√
k

r
) (assumed a = 1) to derive O( W

ns·
√

k·r ) =

O(
√

n

ns
√

k log n
) as per-node capacity upper-bound. Although this

traditional technique is valid and convenient for studying the asymp-
totic unicast capacity and the multicast capacity with some special
configurations (k = n1−ε for some 0 < ε < 1) [18], this may pro-
duce an upper-bound smaller than achievable for asymptotic multi-
cast capacity in a general setting studied in this paper. The reason
for this possible discrepancy is that for a multicast tree T with to-
tal length ‖T‖, value Θ( ‖T‖

r
) may not give the lower bound on

the number of transmissions needed by the tree T due to the mul-
ticast natural of wireless transmissions. To address the above chal-
lenges and discrepancies, we use two new approaches to analyze
the upper-bound of multicast capacity:

1. Area Argument: This is based on analyzing an asymptotic
lower bound on the area covered by the transmission disks of
all internal nodes in a multicast tree;

2. Data Copies Argument: This approach is based on analyz-
ing an asymptotic lower bound on the number of nodes that
receive a “copy” of a multicast data during the transmissions
of all nodes in the tree.

The area argument essentially works as follows. When we mul-
ticast from one source node vi to all its k − 1 receivers Ui, all
nodes lying inside the interference region of any transmitting node

for this multicast session cannot receive data from other nodes si-
multaneously. For any node u, let ti(u) be the time-intervals that
node u will transmit data for multicast tree Ti. Thus, a multicast
tree will claim a number of cylinders (D(u, r)× ti(u) for internal
node u in T ) in the space-time dimension R2 × T , where D(u, r)
denotes the transmission disk of node u, T is the scheduling pe-
riod. Thus, given a multicast tree Ti for multicast originated from
vi, the pairs of (D(u, r), ti(u)) (i.e., transmission disk D(u, r)
will be used for multicast originated at vi during the transmission
time-interval ti(u)) claimed by this multicast should be disjoint
from the pairs claimed by other multicast sessions. For ns multi-
cast sessions, let Ai be the area (inside the deployment region Ω)
covered by all transmitting disks of ith multicast. The obviously,
λi · Ai ≤ W · |Ω|. Assume that Pr (Ai ≥ ℘) → 1. Thus, it is not
difficult to prove the following lemma:

LEMMA 5. For any operation O, such as multicast, let A be
the area of the region defined by uniting the transmission regions
of all transmitting nodes. If A is at least ℘ with high probability,
then, w.h.p., the aggregated capacity for this operation in a random
network deployed in a region with area Φ is at most Φ·W

℘
.

The data-copies argument works as follows. When we multicast
from one source node vi to all its k − 1 receivers Ui, it is more
likely that other nodes will also get a copy of the data. Here, for
the purpose of analysis, when a node v sends data to one of its
neighboring nodes, all its neighboring nodes will be charged a copy
of the data. Notice that here a neighboring node w may not be the
intended receiver. However, since when v is transmitting, any of its
neighboring node w cannot receive data simultaneously from any
other transmitting node due to interference, we will say that node
w also gets a copy of the data. For multicast with k − 1 receivers,
clearly, at least k nodes will get a copy of the data. Generally,
assume that Ci nodes will get a copy of the data when the k − 1
receivers are randomly selected for each possible source node vi.
Obviously,

∑
vi∈S λi · Ci ≤ n ·W . Further assume that Ci ≥ C

almost surely, i.e., Pr (Ci ≥ C) → 1 as n or k goes to infinity.
Then the total multicast capacity satisfies, almost surely,

Λk(n) =
∑
vi∈S

λi ≤ n ·W
C

. (5)

Clearly, C ≥ k. Next subsection is devoted to give a better lower
bound on C. The following lemma is straightforward.

LEMMA 6. For any operation O, such as multicast, let X be
the number of nodes that will receive a copy of the data (i.e., fall
inside the interference region of any one of its transmitting nodes).
Assume that X is at least N with high probability. Then, with high
probability, the aggregated capacity for this operation by all nodes
in a random network of n nodes is at most n·W

N .

In our proofs, we will utilize these two technical lemmas to give
upper-bound on the capacity of a random network for an operation
that will be performed by each node of the network, such as multi-
cast. Notice that the above lemmas require us to find largest ℘ such
that Pr (A ≥ ℘) → 1, or the largest N such that Pr (X ≥ N ) →
1. In some cases, such ℘ may be much smaller than the mean value
E(A) of A; such N may be much smaller than the mean value
E(X ) of X . In these cases, we could rely on a much stronger tech-
nical lemmas based on law of large numbers when the number ns

of operations needed to perform goes to infinity. For example,

LEMMA 7. For ns = f(n) multicast sessions {Oi | 1 ≤
i ≤ ns}, where Oi has node vi as source, let Xi be the number
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of nodes that will receive a copy of the data sent by some trans-
mitting nodes in Oi. Assume that variables Xi are independent,
Var Xi = σ2, and E(Xi) = N for all i. If limn→∞ σ2

ns
= 0

then, w.h.p., the per-node multicast capacity for this operation in a
random network of n nodes is at most O( n·W

nsN ).

PROOF. Let λ be the per-node capacity achievable. Then λ ·∑ns
i=1 Xi ≤ n ·W . Let X =

∑ns
i=1 Xi

ns
and σ2 = Var(Xi). Then

the law of large numbers (Lemma 2) implies that, for any ε > 0,
Pr

(|X −N| < ε
) ≥ 1 − σ2

ns·ε2 . Thus, as long as limn→∞ σ2

ns
=

0, we have X ≥ N − ε almost surely. Thus, we have λ ≤
n·W

ns(N−ε)
= O( n·W

nsN ) almost surely.

To our surprise, we find that the multicast capacity of a random
network where each multicast session has k − 1 receivers has two
regimes: when the number of receivers k−1 is over some threshold,
multicast capacity is asymptotically same as the broadcast capacity;
otherwise, the multicast capacity decreases linearly over 1√

k
. Next,

we will provide upper-bounds for each case separately.

3.3 When k = O(a2/r2)

We first study the multicast capacity when the number of re-
ceivers is at most O(a2/r2). We will present upper bound of the
total multicast capacity. A trivial upper bound for total multicast
capacity is W · n since there are n source nodes and each source
node can only send W bits/sec. A refined upper bound is n·W

k
which is derived from the perspective of recipients: (1) each node
can receive at most W bits/sec, and (2) among received data by all
nodes, any data from any source node will have at least k copies
(one copy at each of the k− 1 receivers and one copy at the source
node). From Lemma 6, for a multicast tree Ti spanning source node
vi and k− 1 receivers Ui, we would like to know the (expected, or
asymptotic lower bound on) number of internal nodes used in Ti.
To analyze this value, we first study the asymptotic lower bound of
the Euclidean length ‖Ti‖ of a multicast tree Ti.

LEMMA 8. [4] Given any k nodes U , any multicast tree span-
ning these k nodes (may be using some additional relay nodes) will
have an Euclidean length at least %·‖EMST (U)‖, where % ≥

√
3

2
and EMST (U) is the EMST spanning U .

Observe that the tight bound on % =
√

3
2

is the famous Gilbert and
Pollak conjecture which was proved by Du and Hwang in 1992 [4].
A bound % ≥ 1

2
can be easily proved as follows. For any steiner

multicast tree T spanning these k nodes, we construct an Euler tour
on this tree. Clearly the total length of the Euler tour (EC) is 2 times
of the length of the multicast tree T . On the other hand, the Euler
tour has length at least that of the Euclidean minimum spanning
tree for these k nodes. The statement follows from ‖EMST‖ <
‖EC‖ = 2 · ‖T‖. Recall that in this paper, ‖T‖ denotes the total
Euclidean length of all links in a structure T .

Based on Lemma 8, to get a lower bound on ‖Ti‖ of any multi-
cast tree Ti, we need study the length of EMST spanning these k
random nodes. In [19], Steele established the following result:

LEMMA 9. The total edge length of the EMST of n nodes ran-
domly and uniformly distributed in a d-dimensional cube of side-
length a is asymptotic to τ(d) · n d−1

d · a, where τ(d) is a constant
depending only on the dimension d.

Thus, based on Lemma 8 and Lemma 9, we have

LEMMA 10. The total edge length, denoted by ‖Ti‖, of any
multicast tree Ti spanning k nodes randomly placed in a square of
side-length a almost surely is at least %·τ(2)·

√
k ·a, when k →∞.

From now on, for simplicity, we will denote τ ← √
3τ(2)/2.

When the number of receivers does not go to infinity when n →∞,
we can use the law of large numbers to show that the expected value
of ns multicast tree lengths ‖Ti‖, for vi ∈ S is at least τ ·

√
k · a

almost surely. Let X = ‖EMST (U)‖, where EMST (U) is the
Euclidean minimum spanning tree of a set of k randomly selected
nodes U in a square of side-length a. It was shown in [19] that
Var(X) ¿ a2 · log k. We then show that X ≤ 2

√
2
√

ka.

LEMMA 11. For any k nodes U placed in a square region with
side-length a, the length of EMST spanning U is at most 2

√
2
√

ka.

PROOF. Given k nodes in the square, we will use Prim’s algo-
rithm to construct EMST: originally each node is a component, and
then we iteratively find a shortest edge to connect two components
to form a larger component until only one component is left. Con-
sider the (k + 1 − g)-th step (for g = k, k − 1, · · · , 1), which
has g connected components as input. For g ≥ 2, if we parti-
tion the square into a b√g − 1c by b√g − 1c grid with side-length

a
b√g−1c , then there is at least one cell that contains at least two
connected components. This implies that the shortest edge con-
necting components at the (k+1−g)th step is at most

√
2 a
b√g−1c .

Consequently, the EMST has length at most
∑k

j=2

√
2 a
b√g−1c ≤∑√

k−1
i=1

√
2a·((i+1)2−i2−1)

i
≤ 2

√
2
√

k − 1 · a.

Bound the data copies: A straightforward lower-bound on the ex-
pected (or asymptotic lower-bound of) number of nodes (including
leaf nodes) needed in a multicast tree spanning k nodes randomly
selected in a square of side-length a is τ ·

√
k · a

r
with high prob-

ability. This bound can be derived as follows: (1) the expected
Euclidean length of a multicast tree is at least τ ·

√
k ·a, and (2) the

transmission range of each node is only r, thus, removing one tree
edge incident on a leaf node will reduce the total edge length by at
most r and we will reduce the number of nodes by 1. Consequently,
we have C ≥ τ ·

√
k ·a/r. Although this bound on C is much better

than bound C ≥ k when k = O(a2/r2), the bound can be further
improved based on the following observation. When nodes on the
multicast tree relay data from the source node to receivers, not only
its downstream nodes of the multicast tree will receive the data, but
also all its neighboring nodes (in communication graph G) will get
a copy of the data. We will then analyze the number of nodes that
will get the copy of the data. Given a multicast tree T , let D(T )
be the region covered by all transmitting disks of all transmitting
nodes (internal nodes) in the multicast tree T . Observe that the leaf
nodes do not contribute to D(T ) at all here. See Figure 1 (a) for il-
lustration. Clearly, the area of D(T ), denoted by |D(T )|, is at most
|D(T )| ≤ 2r · ‖T‖ + k · πr2/2 where ‖T‖ is the total Euclidean
length of all links in T . We will prove that the area of D(T ) is also
at least τ

√
ka·r
c0

for some constant c0 independent of the network.

LEMMA 12. The area of the region D(T ), denoted by |D(T )|
is at most τ

√
ka ·2r +k ·πr2/2 and w.h.p.is at least τ

√
ka·r
c0

when

k < ( τ(1−(6(d+1)·ρ))
6(d+1)+1

)2 · a2

r2 , for some constant c0 = 1/(4ρπ),
where 0 < ρ < 1

12(d+1)
and constant d ≤ 13.

PROOF. For any multicast tree T spanning source node vi and
the set of receivers Ui, for convenience, let V (T ) be the set of
nodes in tree T ; let U ′i = Ui ∪ {vi}; let I(T ) be all the Steiner
nodes used to connect them, i.e., I(T ) = V (T ) \ U ′i . Clearly the
communication graph defined on V (T ) (where two nodes are con-
nected iff their Euclidean distance is no more than r) is connected.
We use GT to denote such induced graph. We will then build an-
other multicast tree T ′ from GT to connect nodes U ′i .
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(a) Region D(T ) (b) Dense receivers

Figure 1: (a) Region D(T ) covered by transmitting disks of in-
ternal nodes in multicast tree T . Here the solid black nodes are
receivers/source and gray nodes are Steiner nodes. (b) Partition
of square with side-length a into squarelets with side-length
r. Here the solid black nodes are receivers/source. Shaded
squarelets are squarelets with at least one receiver.

In graph GT , we build a connected dominating set (CDS) using
a method described in [3, 21]. Source node vi will be added to the
CDS if it is not in the CDS. It has been proved in [3, 21] that, in
the constructed CDS, each node on the CDS has a degree bounded
by a constant, say d. For example, it can be shown that the degree
of node in CDS is bounded by 13 if the method presented in [21]
is used. The multicast tree T ′ is then a simple breadth-first-search
tree computed from the CDS, rooted at the source node vi.

We essentially will prove that each point from the region D(T ′)
is covered by at most a constant c0 number of disks from the mul-
ticast tree T ′. For each point p in the region, we divide the disk
D(p, r) centered at point p with radius r into 6 equal sized sectors.
Thus, any pair of nodes falling into the same sector will be within
distance of r of each other, and thus connected in the original com-
munication graph. Consequently, for each point p, the number of
disks from D(T ′) that cover p is at most 6(d + 1). If it is at least
6(d+1)+1, then at least one of the sectors will have at least d+2
nodes, which implies that any node in that sector will have degree
at least d + 1 in the induced CDS graph. This is a contradiction to
the fact that the degree of induced CDS is bounded by d. Thus, the
area of the region D(T ′) is thus at least |I(T ′)|·πr2

6(d+1)
, where d is the

degree bound on the induced CDS graph constructed. Here |I(T ′)|
is the number of internal nodes in multicast tree T ′.

Notice that some leaf nodes in T may become internal nodes in
T ′; some internal nodes may not be used by tree T ′ at all. Let A(T )
be the region covered by all disks centered at all nodes of a tree T ,
including the leaf nodes. Let `(T ) be the number of leaf nodes in a
tree T . Obviously, |D(T )| + `(T ) · πr2 ≥ |A(T )| ≥ |A(T ′)| ≥
|D(T ′)|. Thus,

|D(T )| ≥ |D(T ′)| − `(T ) · πr2 ≥ |I(T ′)| · πr2

6(d + 1)
− `(T ) · πr2.

Obviously, `(T ) ≤ k. For a multicast tree T ′, there are at most k
leaf nodes. If we remove all edges in T ′ incident on leaf nodes, the
total edge length of all edges left is at least |T ′| − k · r. Thus, the
number of internal nodes |I(T ′)| in T ′ is at least |T

′|−k·r
r

. Notice
that T ′ is a tree spanning the source node vi and all receivers U ′i .
Thus, with high probability, |T ′| ≥ τ

√
k · a since U ′i has k nodes.

Thus, with high probability, we have |I(T ′)| ≥ τ
√

k·a
r

−k. Assume
that k < ( τ(1−(6(d+1)·ρ))

6(d+1)+1
)2 · a2

r2 , which implies |D(T )| is at least

|I(T ′)|·πr2

6(d+1)
−`(T ) ·πr2 ≥

(
τ
√

k·a
r

−k

6(d+1)
− k

)
·πr2 ≥ ρπτ

√
k ·a ·r.

For example, we can set ρ = 1
12(d+1)

. Notice that at least 1/4

of each transmitting disk is inside the deployment square. Thus,
the region D(T ) that are inside the deployment square is at least
ρπτ

√
k · a · r/4. This finishes the proof.

For convenience, hereafter, we use

θ1 =

(
τ(1− (6(d + 1) · ρ))

6(d + 1) + 1

)2

(6)

to denote the threshold value such that Lemma 12 is true if k <
θ1 · a2

r2 . Based on Lemma 12, we know that the expected number,
denoted by C, of nodes from V that is in the region D(T ) is at least

|D(T )| · n

a2
≥ τ ·

√
k · a · r · n
c0a2

=
τ ·
√

k · r · n
c0a

Recall that we assume that there is only one single channel in the
network. It is then not difficult to show the following lemma:

LEMMA 13. With high probability, the number C of nodes that
get a copy of the multicast data satisfies C > τ ·r·

√
k·n

2c0a
.

PROOF. Consider a multicast tree T . Notice that n wireless
nodes will be randomly distributed in a square region of side-length
a. Let Xi = {0, 1} be an indicator variable whether the ith node
vi will fall inside the region D(T ) for a multicast tree T . Clearly
Pr (Xi = 1) = |D(T )|

a2 . Recall that, we already proved that, with

high probability, |D(T )| ≥ τ
√

ka·r
c0

. Thus, we have Pr (Xi = 1) ≥
τ
√

k·r
c0·a . Obviously, X =

∑n
i=1 Xi is the expected number of

nodes falling inside the region D(T ), which is also the number
C of nodes that will get a copy of the data by multicast. Then the
expected value E(X) ≥ τ

√
k·r·n

c0·a . Based on Lemma 3, we have

Pr
(
C ≤ n · |D(T )|

2a2

)
≤ e

−2
(

n· |D(T )|
a2 −n· |D(T )|

2a2

)2

n = e
−n·|D(T )|2

2a4 .
Notice that to guarantee a connected network with high proba-

bility, we have a <
√

πn
log n

· r with high probability. Thus,

Pr
(

C ≤ n · |D(T )|
2a2

)
≤ e

−n·τ2·k·r2

2(c0)2·a2 ≤ e
− τ2·k·log n

2πc20 =
1

n
τ2·k
2πc20

Consequently, when n →∞, Pr
(
C ≤ n · |D(T )|

2a2

)
→ 0. Thus,

Pr

(
C >

τ · r ·
√

k · n
2c0 · a

)
≥ Pr

(
C > n · |D(T )|

2a2

)
→ 1.

This finishes the proof.

Consequently, we have the following theorem:

THEOREM 14. The multicast capacity with k − 1 receivers for
n nodes that are randomly and uniformly deployed in a square with
side-length a is at most c1 · aW

r
√

k
for some constant c1 when k <

θ1 · a2/r2.

PROOF. Notice that the multicast capacity is at most nW
C

and,
with high probability, C ≥ τ ·r·

√
k·n

2c0a
when k < θ1 · a2/r2. Thus,

the multicast capacity Λk(n) is at most nW ·2c0a

τ ·r·
√

k·n = c1 · aW

r
√

k
for a

constant c1 = 2c0
τ

. This finishes the proof.
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Recall that we have proved that, to guarantee that we have a con-
nected network with high probability, we need a ≤ r

√
nπ

log n+β
for

β →∞. Thus, letting c2 = c1
√

π, we have the following theory:

THEOREM 15. The multicast capacity for a random network of
n nodes, when k < θ1 · a2/r2 = O( n

log n
), is at most

Λk(n) ≤ c2 ·
√

n√
log n ·

√
k
·W = O(

√
n√

log n ·
√

k
·W ).

With ns multicast sessions, the per node multicast capacity is

λk(n) = min(W,
Λk(n)

ns
) = O(min(W,

√
n

ns

√
log n ·

√
k
·W )).

Notice that Theorem 14 was proved under the assumption that
k →∞. When this is not the case, we can prove that the per-node
multicast capacity λ (when each source node generates multicast
data at rate λ) also satisfies that λk(n) = O(

√
n

ns
√

log n·
√

k
·W ) when

ns → ∞. Since k is constant in this case, we know that the per-
node multicast capacity is upper-bounded by the per-node unicast
capacity with ns unicast sessions. Thus, the per-node multicast
capacity is almost surely at most O( n

ns
√

log n
·W ), which is same

as O( n

ns
√

log n·
√

k
·W ) since k is constant.

3.4 When k = Ω( a2

r2 )

In the previous subsection, we showed an upper bound of the
multicast capacity when k < θ1 · a2/r2. In this subsection we will
present an upper bound on multicast capacity when k ≥ θ1 ·a2/r2.
We will essentially show that in this case, multicast is asymptoti-
cally equivalent to broadcast. Broadcast capacity of single-source
of an arbitrary network has been studied in [11, 20]. In this paper,
we will prove that the achievable integrated multicast capacity is
only Θ(W ) if an arbitrary k subset of the n nodes will serve as
receivers for each possible source node vi.

We partition the square of side-length a into squarelets, each
with side length r. The square will be partitioned into M = da2/r2e
squarelets, say B1, B2, · · · , BM . Recall that we will randomly se-
lect k ≥ θ1 · a2/r2 receivers in the square region. See Figure 1 (b)
for illustration.

LEMMA 16. With high probability, at least ρ·M squarelets will
have at least one receiver when k ≥ θ1 · a2/r2 for a constant θ1.

PROOF. Let X be the number of squarelets that do not have
any receivers inside, and A be a fixed fraction of squarelets, say
A = ρ ·M for a constant 0 < ρ < 1. Let Xi be indicator variable
whether squarelet Bi is empty of receivers (Xi = 1 is empty).
Then X =

∑M
i=1 Xi. Notice Var(X) = Var(

∑M
i=1 Xi) =∑M

i=1

∑M
j=1 Cov(Xi, Xj), where Cov(Xi, Xj) = E(Xi ·Xj)−

E(Xi)E(Xj) is the covariance of variable Xi and Xj . We then
compute such Cov(Xi, Xj) for all possible pairs of i and j: Cov(Xi, Xi) =
E(Xi) − E(Xi)

2 and E(Xi) = (1 − 1
M

)k; and E(Xi · Xj) =

(1 − 2
M

)k if i 6= j. Consequently, we have Var(X) = M(M −
1)[(1 − 2

M
)k − (1 − 1

M
)2k] + M [(1 − 1

M
)k − (1 − 1

M
)2k].

Since [(1 − 2
M

)k − (1 − 2
M

+ 1
M2 )k] ≤ 0, we have Var(X) ≤

M [(1− 1
M

)k − (1− 1
M

)2k]. From Lemma 1, we have

Pr (X − E(X) ≥ ρ ·M) ≤ M [(1− 1
M

)k − (1− 1
M

)2k]

ρ2M2

From k ≥ θ1 ·M , E(X) = M · (1− 1
M

)k ≤ M · e−θ1 . Thus,

Pr
(
X ≥ (e−θ1 + ρ) ·M

)
≤ ( 1

e
)θ1 − ( 1

e
)2θ1

ρ2
· 1

M

When M → ∞, the probability goes to zero. We can also show
that, with high probability, there is at most a constant fraction of
squarelets that will be empty of receivers. This finishes the proof.

We then prove that the union of the transmission disks of these
k nodes in a multicast will cover at least a constant fraction, say
0 < ρ2 ≤ 1, of the deployment region.

LEMMA 17. The union of the transmission disks of these k nodes
(k−1 receivers and 1 source node) in a multicast will cover at least
a constant fraction, say 0 < ρ2 ≤ 1, of the deployment region.

PROOF. Based on lemma 16, we know that among M squarelets
partitioned from the deployment region, there are at least ρ · M
squarelets, each of which contains at least one receiver (or source)
node inside. In each such a squarelet Bj , there is at least one re-
ceiver and thus at least one transmitting node in the multicast tree
that covers this receiver. The transmitting node must lie inside this
squarelet or 8 adjacent squarelets. On the other hand, each trans-
mitting disk can cover receivers from at most 9 squarelets. Conse-
quently, we must have at least ρ ·M/9 transmitting disks to cover
receivers from ρ·M squarelets. Recall that the squarelet side-length
is r, which implies that each point in the deployment region is cov-
ered by at most 9 such representative transmission disks. Conse-
quently, the total area covered by these representative transmission
disks is at least ρ ·M · πr2/81. Recall that the deployment region
has area a2 and M = da2/r2e. Thus, the area of all transmission
disks of all these k nodes is at least ρ2 = ρ·π

81
fraction of the total

area of the deployment region. This finishes the proof.

Based on Lemma 17 and Lemma 5, we have

THEOREM 18. When k ≥ θ · a2/r2 for a constant θ, with high
probability, Λk(n) ≤ W ·a2

ρ2a2 = W
ρ2

= O(W ),x where ρ2 is a con-
stant depending only on θ.

Notice that for broadcast, it has been proved in [11, 20] that the
broadcast capacity is only Θ(W ). Here we essentially prove that
for multicast, when the number of receivers is large enough (at least
Ω(a2

r2 )), the asymptotic multicast capacity is also only O(W ).

4. LOWER BOUNDS ON MULTICAST CA-
PACITY WITH RANDOM NETWORKS

In this section, we will provide a multicast scheme and prove
that the multicast capacity achieved by our scheme matches the
asymptotic upper bounds.

4.1 Good Approximation of MCDS
Our multicast scheme is based on a good approximation of a

minimum connected dominating set (MCDS) of a random network.
For each randomly generated network instance, we will first con-
struct an approximation of MCDS. For example, we can use the
method introduced in [3] (Algorithm 1 in [3]). This method first
finds a maximal independent set using a greedy approach, and then
connects them using relay nodes. An maximal independent set
(MIS) can be constructed as follows: originally all nodes are marked
as white nodes and each node v is assigned a unique rank(v); a
node v is selected to MIS (and marked as black node consequently)
if and only if it has the smallest rank among all its white neigh-
bors; Clear such MIS is a dominating set. Then, we connect every
pair of dominating nodes that are at most 3 hops away using the
least-hop path. The nodes on such least-hop paths will be marked
as connectors. The set of all MIS nodes and connectors will form
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a connected dominating set [3]. We then show that we can sched-
ule the transmissions of all nodes in CDS in a constant time-slots
without interference; the CDS is a length spanner.
TDMA Scheduling with Constant Slots: For each node on the
CDS, there are at most a constant number of neighboring nodes on
CDS. In other words, the degree of any node on CDS is bounded by
a constant, say D1. Using this property, it is easy to show that the
number of nodes in the CDS constructed above that can interfere
with any node in the CDS is at most a constant. For each node
v, consider two circles both centered at the node and with radii R
and R + r. Consider a node u whose transmission will interfere
with the transmission of node v. Clearly node u will be completely
inside the disk centered at v with radius R + r. On the other hand
we know each circle centered at u with radius r contains at most
D1 + 1 nodes. Let ∆ be the maximum number of nodes in CDS
whose transmission will interfere with the transmission of a node v
in CDS. Using the area argument, we can show that

∆ ≤ π · (R + 2r)2 · (D1 + 1)

π · r2
= (1 +

2R

r
)2(D1 + 1).

This property ensures that we can schedule the transmissions of all
nodes in CDS by a TDMA manner such that all nodes will be able
to transmit at least once in every ∆ + 1 time slots. Consequently,
the per-node data transmission data rate achieved by nodes on the
CDS is at least W

∆+1
. Notice that here ∆ is a constant.

Length Spanner Property: For any two nodes u and v in the net-
work, if ‖u − v‖ > r, then the shortest path connecting u and
v via the CDS (constructed above) has length at most 3 times the
length of the shortest path connecting them in the original random
communication graph G = (V, E) (see Lemma 5 of [3]). Notice
that here when u (or v or both) is not in the CDS, we will first con-
nect u (or v or both) to one of its dominators (say u′ and v′) in the
CDS. Then we find the shortest path connecting these correspond-
ing dominators u′ and v′ in the CDS.

4.2 When k = O(a2/r2)

2

u

v

w

w

1

(a) Squarelets partition (b) Manhattan Routing Tree

Figure 2: (a) Partition deployment square into squarelets with
side-length r/

√
5. For an edge uv ∈ EMST (U ′1), find a node w

(either node w1 or node w2 which has same row as u and same
column as v) to connect them. (b) a multicast tree constructed
using Manhattan approach, where dotted lines denote original
EMST of nodes in a multicast session.

When the number of receivers, plus the source node, k is only
O(a2

r2 ), we will construct a multicast tree from CDS. Consider an
instance of a random network G = (V, E) and also an instance of
multicast with v1 as the source node and U1 = {v2, v3, · · · vk} as
the receiver nodes. Let U ′1 = {v1, v2, v3, · · · vk}. We will con-
struct a multicast structure as follows:

Algorithm 1 Multicast Capacity Achieving Manhattan Routing
Based on a Squarelet for Nodes U ′1
1: We partition the deployment square into squarelets, each with

side length r/
√

5 (as in [18], see Figure 1 (b) for illustration).
Thus, we have d a

r/
√

5
e squarelets. Each squarelet is denoted

by (i, j) when it is the ith column and jth row.
2: We build the Euclidean minimum spanning tree, denoted as

EMST (U ′1), connecting nodes in U ′1, using following method
(also described in Lemma 11):
(1) Originally, k nodes U ′1 form k components;
(2) for the gth step, where g = 1, 2, · · · , k − 1, partition the
deployment square into at most k−g square-shaped-cells, each
with side length d a

b√k−gce;
(3) find a cell that contains two nodes of U ′1 that are from 2
different connected components and then connect them using
Manhattan routing; merge these two connected components.

3: For each link uv in the tree EMST (U ′1), assume that u and v
are inside squarelet (iu, ju) and squarelet (iv, jv) respectively.
Find a node w in squarelet (iv, ju) (or squarelet (iu, jv)), i.e.,
uwv is a Manhattan path connecting u and v. We find the
shortest path (with minimum Euclidean length) connecting uw
and wv via the CDS constructed previously.

4: The resulted structure by uniting all such shortest paths for all
links in EMST (U ′1) will serve as multicast. Notice that here
such structure may not be a tree. If this is the case, we could
remove the cycles that do not contain nodes from U ′1. Denote
the resulted tree as MT (U ′1).

Using Manhattan path to connect nodes is to avoid the hot-spot
area in the center of region produced by directed shortest path rout-
ing, via a kind of load balancing. Due to such pseudo-load-balancing
approach, we can later show that the “load” (total data rates of all
routing requests) on each node on CDS (equivalently each squarelet)
is at most a fraction of W almost surely.

To show that the above routing achieves the asymptotically opti-
mum multicast capacity, we need show that the total number of data
copies of a multicast bit is at most O( r·

√
k·n

a
), which will be de-

rived based on the upper bound on the area covered by all transmis-
sion disks in the multicast tree MT (U ′1). We will prove that, with
high probability, the tree MT (U ′1) has Euclidean length at most a
constant factor of the Euclidean length of tree EMST (U ′1).

THEOREM 19. With high probability, the total Euclidean length
of the multicast tree MT (U ′1) is within a constant c5 factor of
‖EMST (U ′1)‖, i.e., ‖MT (U ′1)‖ ≤ c5‖EMST (U ′1)‖.

PROOF. For k nodes U ′1 in a multicast session with source node
v1, we will first construct the Euclidean minimum spanning tree
EMST (U ′1). Then for each edge uv in EMST (U ′1), we will re-
place it with a Manhattan path uwv Here node w is in the same
column with v and same row with u in the squarelet partition.
The resulting structure is call Manhattan tree MH(U ′1). Then for
each edge uv in MH(U ′1), we find the shortest path, denoted as
PG(u, v), connecting them in the original communication graph
G. Here we denote the final routing structure as ST (U ′1). We will
prove that the total length of ST (U ′1) is a constant factor of the
total length of EMST (U ′1), with high probability.

For every edge uv in the Manhattan routing structure, we de-
scribe a method to find a routing path connecting them. When
‖u − v‖ ≤ 1, no additional node is needed. Otherwise, we will
try to find a node w satisfying the following conditions

1. ‖w − u‖ ≥ σ · r, for some small constant σ > 0.
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2. Node w is close to the direction of uv, i.e., ∠wuv ≤ ϕ for
some pre-defined angle ϕ < π/3.

We can show that node w makes a non-negligible progress, i.e.,
‖v − u‖ − ‖v − w‖ ≥ % · r for some constant % > 0. After
node w is found, we then recursively find nodes to connect w and
v. Obviously, the area of the region A to select w is ϕ · (1− σ2)r2

and the area of the deployment region is a2. Let ` be the number
of relay nodes we need to find to reach node v from u using the
above approach. Then the overall probability that at least one such
intermediate node w used to connect u and v is empty is at most(
1− ϕ·(1−σ2)

(a/r)2

)n

· `. Then the probability that every time we can

find a relay node is at least 1−
(
1− ϕ·(1−σ2)

(a/r)2

)n

`. We denote the

first relay node found by node u as w. Then ‖u− v‖− ‖v−w‖ is
at least r − r

√
1 + σ2 − 2σ · cos ϕ. By induction, the number of

relay nodes connecting u and v is at most ` ≤ ‖u−v‖
r−r

√
1+σ2−2σ·cos ϕ

.

Thus, the probability that we can connect u and v using the above
approach is at least 1 −

(
1− ϕ·(1−σ2)

(a/r)2

)n

· ‖u−v‖
r−r

√
1+σ2−2σ·cos ϕ

.

Let χ =
√

2

1−
√

1+σ2−2σ·cos ϕ
.

The probability we can find a sequence of nodes w for all edges
in MH(U ′1) based on previous approach is at least

1− [1− ϕ · (1− σ2)

(a/r)2
]n ·

√
2|EMST (U ′1)|

r − r
√

12 + σ2 − 2σ · cos ϕ
.

Recall that, with high probability, we have ‖EMST (U ′1)‖ ≤ τ ·√
k · a. Then, when a ≤ r ·√ c·n

ln n
, the above probability is at least

1−(
1
n

) ϕ(1−σ2)
c

− 1
2 · 1√

ln n
·√c ·χ ·

√
k · τ ≥ 1−(

1
n

) ϕ(1−σ2)
c

− 3
2 ·

1

(ln n)3/2 · c3/2 · χ · θ1 · τ . The inequality comes from the fact that

k ≤ θ1a
2/r2. To ensure that the above probability goes to 1 as

n →∞, it is sufficient (and necessary) to require that

ϕ(1− σ2)

c
− 3

2
≥ 0. (7)

We can easily find such ϕ, σ and c to make it satisfiable. No-
tice that here we need 0 < c < 4π/9. Thus, with high prob-
ability, the total length of ST (U ′1) has Euclidean length at most√

2‖EMST (U′1)‖
1−
√

1+σ2−2σ·cos ϕ
. Because for any two nodes u and v in the net-

work, if ‖u − v‖ > r, then the shortest path connecting u and
v via the CDS has length at most c4 ≤ 5 times the length of the
shortest path connecting them in the original random communica-
tion graph G = (V, E), see [3] for proofs. Thus, with high prob-
ability, the total length of ST (U ′1) has Euclidean length at most
c4
√

2·‖EMST (U′1)‖
1−
√

1+σ2−2σ·cos ϕ
.

Recall that for CDS constructed previously, we know that the
shortest Euclidean path connecting u and v via CDS is only at most
3 times of the length of the shortest path connecting u and v in the
network G = (V, E). Thus, the multicast tree MT (U ′1) based
on CDS has Euclidean length at most 3‖MT (U ′1)‖. The theorem
follows by letting c5 = 3 c4

√
2

1−
√

1+σ2−2σ·cos ϕ
.

Consequently, we have Euclidean length ‖MT (U ′1)‖ < c5η
√

k ·
a with high probability since ‖EMST (U ′1)‖ ≤ η

√
k · a for η =

2
√

2 (see Lemma 11). Here we denote the region covered by all
transmission disks of all internal nodes in MT (U ′1) as D(T ) and
the number of nodes lying in D(T ) as C. We then show that with
high probability, the multicast capacity achieved using above rout-
ing approach is within a constant factor of the asymptotic optimum.

We essentially show that, with high probability, the number C of
nodes that will receive a copy of the multicast data is within 2E(C).

THEOREM 20. The total multicast capacity Λk(n) achievable
by all multicast flows is at least c6

a·W
r
√

k
, when k ≤ θ1

a2

r2 and a/r ≤√
cn
ln n

for some constant c ∈ (0, 4π/9). Here c6 is a constant.

PROOF. Consider a set of receivers U1 for source node v1. Let
tree T be the multicast tree MT (U ′1) constructed above. Let Xi ∈
{0, 1} be an indicator variable whether the ith node vi will fall in-
side the region D(T ) for a multicast tree T . Clearly p = Pr (Xi = 1) =
|D(T )|

a2 . Notice that the area of D(T ) is at most 2r · ‖T‖+kπr2/2,
and edge length ‖T‖ ≤ c5η ·

√
k · a with high probability. Ob-

viously, X =
∑n

i=1 Xi is the number of nodes falling inside the
region D(T ), and X is binomial distribution. Using Lemma 3,

Pr
(

C > |D(T )| · 2n

a2

)
≤ |D(T )| · 2n

a2 · (1− |D(T )|
a2 )

(|D(T )| · 2n
a2 − n·|D(T )|

a2 )2

=
2[1− |D(T )|

a2 ]

|D(T )| · n
a2

≤ 2a2

n · |D(T )| ≤
2c0 · a2

n · τ
√

k · a · r
=

a

r

1

n
√

k

2c0

τ
≤ 1√

n · k · ln n

2c0
√

c

τ

The last inequality comes from the assumption that a/r ≤ √
c·n
ln n

.
The second to last inequality comes from Lemma 12 that |D(T )| ≥
τ
√

k·a·r
c0

. Consequently, Pr
(
C ≤ |D(T )| · 2n

a2

) ≥ 1− 1√
n·k·ln n

2c0
√

c
τ

.
Thus the number of nodes that can get a copy of the data for multi-
cast within nodes U ′1, with high probability, is at most

|D(T )|·2n

a2
≤ c5η

√
k·4n · r

a
+πnk

r2

a2
≤ (4c5η+π

√
θ1)·n

√
k· r

a
,

The last inequality comes from k ≤ θ1
a2

r2 .
Recall that, by performing multicast based on CDS structure, we

can guarantee that each node will be able to transmit once every
∆+1 time-slots. This implies that the total bits/sec achieved by all
nodes is at least n · W/(∆ + 1). Consequently, the multicast ca-
pacity is at least n·W/(∆+1)

(4c5η+π
√

θ1)·n
√

k· r
a

= 1
(4c5η+π

√
θ1)·(∆+1)

· a·W
r
√

k
.

This finishes the proof by setting c6 = 1
(4c5η+π

√
θ1)·(∆+1)

.

Observe that the correctness of Theorem 20 relies on the fact
that a

r
≤ √

cn
ln n

and k ≤ θ1a
2/r2. Here constant 0 < c < 4π/9.

Consequently, by letting a
r

=
√

cn
ln n

for 0 < c < 4π/9, and
c′2 = c6

√
c, based on Theorem 20, we have

COROLLARY 21. The multicast capacity for a random network
of n nodes, when k < θ1 · a2/r2, is at least

Λk(n) ≥ c′2 ·
√

n√
log n ·

√
k
·W = Ω(

√
n√

log n ·
√

k
·W ).

The multicast capacity per node (with n sources) is

λk(n) =
Λk(n)

n
= Ω(

1√
n log n ·

√
k
·W ).

Observe that the correctness of Theorem 20 requires that the
“load” of every routing node is no more than a constant factor of
W bits/sec, due to the requirement of TDMA node scheduling. Un-
fortunately, it is unknown now whether we can prove whether such
condition is satisfied with high probability. We will prove a weaker
capacity lower bound: with high probability, the traffic load on any
routing node and all interfering nodes is no more than O(W ).
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Given a squarelet, we define its load as the total number of multi-
cast sessions that will be routed through nodes inside this squarelet.
We show that under our routing algorithm, for any squarelet, with
high probability, its load is no more than Θ(

√
kn log n). To prove

our claim, we first study a simple unicast case. Consider a grid of
L× L squarelets. Consider a specific squarelet s that is of ith row
and jth column in the squarelet-grid. Randomly pick two nodes u
and v from the grid and connect them via Manhattan routing. Let
ps(L) denote the probability that the Manhattan routing will use
nodes from the squarelet s. Then

ps(L) =
i− 1

L2
· L− i + 1

L
+

j − 1

L2
· L− j + 1

L
. (8)

Here i−1
L2 · L−i+1

L
(resp. j−1

L2 · L−j+1
L

) is the probability that
squarelet s is used when u (resp. v)is on the same row (resp. col-
umn) as s. It is easy to show that 2

L2 ≤ ps(L) ≤ 2
L

.
Let us now study the number of times that a specific squarelet s

is used by our routing structure for multicast. Recall that we will
construct the Euclidean minimum spanning tree as the method de-
scribed in Lemma 11 and then find multicast routing structure as
Algorithm 1. For a given multicast session, this squarelet s may
be used in any one of the k steps to build the spanning tree. For
step g (with 1 ≤ g ≤ k − 1), recall that we will partition the
square with side-length a into b√k − gc2 ≤ k− g cells, each with
side-length a

b√k−gc . From pigeonhole principle, there exists a cell
that contains two nodes, say u and v, from two different connected
components. We will connect them and merge these two connected
components. Here we will connect u and v using Manhattan rout-
ing as illustrated in Figure 2. Let Xs,g be the indicator whether the
specific squarelet s is used in this gth step. Clearly,

Pr (Xs,g = 1) =
1

b√k − gc2 · ps(d
a

b√k−gc
r/
√

5
e), (9)

where 1
b√k−gc2 is the probability that the cell containing squarelet

s is used, and ps(d
a

b√k−gc
r/
√

5
e) is the probability that s is used when

that cell containing s is used. Here d
a

b√k−gc
r/
√

5
e is the number of

squarelets per row in a cell, i.e., the value of L in formula 8. Thus,

p = Pr (Xs = 1) ≤
k−1∑
g=1

Pr (Xs,g = 1)

=

k−1∑
g=1

1

b√k − gc2 · ps(d
a

b√k−gc
r/
√

5
e) ≤ 4

√
10

5

√
k · r

a

Notice that, to achieve larger multicast capacity, we will set a
r

=√
cn
ln n

for some constant 0 < c < 4π/9 (see proof of Theorem

19). Thus, Pr (Xs = 1) ≤ 4
√

10
5

√
k·ln n

cn
. Then we have

LEMMA 22. Given ns multicast sessions, the expected number
of multicast routing flows that use a specific squarelet s is at most
4
√

10
5
√

c
·ns ·

√
k·ln n

n
. When ns = n, it is at most 4

√
10

5
√

c
·
√

k · n · ln n.

Recall that all n multicast sessions will randomly select its re-
ceivers. Let µ = 4

√
10

5
√

c
·
√

k · n · ln n. Using Lemma 3, we can

show that with probability at least 1− 2(1−p)

µ2 = 1−O( 1√
kn log n

)

the number of multicast flows routing through a squarelet is at most
2µ. Thus, we have the following theorem

THEOREM 23. With probability at least 1 − O( 1√
kn log n

), the
number of multicast flows that pass through a squarelet is at most
2µ = 8

√
10

5
√

c
·
√

k · n · ln n = c11

√
kn log n.

Thus, by letting λi = c12W√
kn log n

, 1 ≤ i ≤ n, for some proper
constant 0 < c12 < 1, then with high probability, the total traffic
load at any specific squarelet is at most c11c12W bits/sec. Since the
size of the squarelet is r/

√
5 and the interference range R = Θ(r),

we can show that the total flow requirements of all squarelets that
could cause interference to a given squarelet is also at most ∆ ·
c11c12W with high probability. Here ∆ = Θ(1) is the number of
squarelets within distance R from this squarelet. Thus, by choosing
c12 ≤ 1

∆c11
, we can schedule flows at this squarelet with high

probability (at least 1 − O( 1√
kn log n

)). Recall that w.h.p., a flow

will pass through O(
√

k·a/r) = O(
√

kn/ log n) squarelets. Then
the probability that a given flow can be scheduled via TDMA is at

least
(
1−O( 1√

kn log n
)
)O(

√
kn/ log n)

= 1− O(1)
log n

.

4.3 When k = Ω( a2

r2 )

In this case, we have proved that the upper bound on the total
multicast capacity is only Θ(W ). Obviously, the total multicast
capacity is at least the lower bound of the capacity for broadcast.
In [11], they present a broadcast scheme to achieve capacity Θ(W ).
Thus, we have the following theorem

THEOREM 24. The total multicast capacity Λk(n) achievable
by all multicast flows is at least c7W when k = Ω(a2/r2), where
c7 = 1

∆+1
and constant ∆ is the maximum number of CDS nodes

that are within interference range R of a node.

5. OTHER MULTICASTS

5.1 Capacity Bound for Group Multicast
In previous sections we have studied the asymptotic multicast ca-

pacity by assuming that we randomly select k−1 receivers for each
multicast session. In this section, we study the multicast capacity
of so-called k-group multicast: for each source node vi, there are
k − 1 groups of receivers gi,1, gi,2, · · · , gi,k−1. The receivers in
each group gi,j are covered by a disk with radius δ ·r for a constant
δ and centered at one of the receivers in the group. We assume that
the center node in each group is randomly selected. The number
of nodes in each group could be arbitrary. For simplicity, let node
zi,j be the center node of group gi,j . We then study the multicast
capacity for group-multicast when each node vi will have k − 1
randomly selected groups and it wants to send data with rate λi to
all receivers in these k − 1 groups.

As the case when each group has only one node, when k ≥
θ1a

2/r2, it is easy to prove that the capacity for group-multicast is
at most W/%2 as Theorem 18. Clearly, a simple broadcast based
on the connecting dominating set constructed previously will also
achieve a capacity for group-multicast at least W

∆+1
. Consequently,

we have

THEOREM 25. For group-multicast, when k ≥ θ1a
2/r2 for

any constant θ1 > 0, the capacity of group-multicast is at most
W/%2 and at least W

∆+1
.

First, for group-multicast, a multicast tree has to reach the cen-
ter node zi,j of each group gi,j . Then from Theorem 14, the ca-
pacity of group-multicast is at most c1 · aW

r
√

k
with high probabil-

ity when k < θ1 · a2/r2. We then show how to design multi-
cast routing for the group-multicast problem: we first apply our
multicast scheme for traditional multicast when nodes zi,j , 1 ≤
j ≤ k − 1, are receivers for source node vi. We then let node
zi,j multicast locally to all receivers in the group gi,j . We already
proved in Theorem 19, the total length of the multicast tree to span
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these randomly selected nodes zi,j is at most c5‖EMST (U ′i)‖
with high probability. Recall that ‖EMST (U ′i)‖ ≤ 3τ(2)

√
k·a

2
with high probability. Notice that the total area covered by trans-
mitting disks of relay nodes used for relaying data from each zi,j

to receivers in its group is at most π(δ + 1)r2. Then, the area
covered by all transmitting disks for a multicast session is at most
2r · |MT (U ′1)| + (k − 1) · π(δ + 1)r2, which is w.h.p.at most
2r · c5

3τ(2)
√

k·a
2

+ k · π(δ + 1)r2 ≤ (
θ1π(δ + 1)2 + 3c5τ(2)

) ·√
k · a · r. The last inequality comes from the fact that k ≤ θ1

a2

r2 .
For convenience, let c8 = θ1π(δ + 1)2 + 3c5τ(2). Then sim-
ilar to Theorem 20, we can prove that the number of nodes that
will get a copy of the data from one multicast session is at most
c8

√
k · a · r · 2n

a2 = 2c8 · n ·
√

k · r
a

. Thus, we have

THEOREM 26. When k ≤ θ1a
2/r2, the aggregated multicast

capacity for group-multicast with k− 1 groups is at most c1 · aW

r
√

k
,

and is at least c9
a·W
r
√

k
, with high probability. Here constant c9 =

2c8(∆ + 1).

5.2 Bounds for Arbitrary Networks
In previous studies we concentrated on the multicast capacity for

random networks when nodes will be randomly placed in the de-
ployment region. In this section we will study what is the asymp-
totic maximum multicast capacity that can be achieved by a specific
connected network when nodes’ position can be carefully selected.

We first present a constructive lower bound on the multicast ca-
pacity. Assume that n nodes are deployed in a

√
n by

√
n grid, each

cell has side-length r, i.e. the side-length of the square is a = r
√

n.
The k−1 receivers are randomly selected from the grid points. We
then perform multicast as before: the multicast tree is constructed
based on the Euclidean minimum spanning tree connecting source
node and k−1 receivers. Let L be the total length of the Euclidean
MST constructed above. Similar to previous studies in Subsection
4.2, we know that the multicast capacity Λn satisfies Λn ≥ c′6

W ·a2

L·r
for some constant c′6 depending only on R/r. Lemma 11 gives an
upper bound on L for the EMST. Thus,

COROLLARY 27. The multicast capacity Λn for an arbitrary
network (we can choose node positions), is at least c′6

2
√

2

√
n√
k
·W .

6. LITERATURE REVIEWS
Network capacity has been extensively studied recently. For

a given statistical description of the network, a set of constraints
(such as power per node, link capacity, etc.), and a list of desired
communication pairs, the capacity region is the closure of all rate
tuples that can be achieved simultaneously. Here a rate tuple spec-
ifies the rate for each of the desired communications. Kyasanur
and Vaidya [13] studied the capacity region on given multi-hop
multi-radio multi-channel wireless networks when there are total c
channels available and each node has m wireless interfaces with
m ≤ c. On the other aspect, several papers [2, 12] recently stud-
ied how to satisfy a certain traffic demand vector from all wireless
nodes by a joint routing, link scheduling, and channel assignment
under certain wireless interference models.

Gupta and Kumar [7] studied the asymptotic unicast capacity
of random multi-hop wireless networks for two different mod-
els. When each wireless node is capable of transmitting at W
bits per second using a constant transmission range, the through-
put obtainable by each node for a randomly chosen destination is
Θ( W√

n log n
) bits per second under the protocol-interference model,

where n in number of nodes. If nodes are optimally assigned and

transmission range is optimally chosen, even under optimal circum-
stances, the throughput is only Θ( W√

n
) bits per second for each

node. Similar results also hold for physical interference model.
Grossglauser and Tse [6] recently showed that mobility actually
can help to improve the unicast capacity if we allow arbitrary large
delay. Their main result shows that the average long-term through-
put per source-destination pair can be kept constant even as the
number of nodes per unit area increases with the aid of mobility
and dynamic power adjustment. Notice that this is in sharp contrast
to the fixed network scenario (when nodes are static after random
deployment). The main idea used in [6] is to use some intermediate
node to serve as ferry node: this node will carry the data from the
source node and move around and it will dump the data to the tar-
get node when it is within its communication range. In other words,
essentially, the result presented in [6] still obey the capacity bound
proposed in [7]: the capacity is improved because the average dis-
tance L a packet has to be transmitted is reduced from Θ(1) in [7]
to Θ(r(n)) in [6]. In summary, for random networks, under the
protocol model, the achievable per-node throughput capacity λ(n)
and the average travel distance L satisfies λ(n)·L ≤ Θ( W

∆2n·r(n)
).

Similar phenomenon has also been observed in [14].
Broadcast capacity of an arbitrary network has been studied in

[11, 20]. They essentially showed that the broadcast capacity of a
given network is Θ(W ) for single source broadcast and the achiev-
able broadcast capacity per node is only Θ(W/n) if each of the
n nodes will serve as source node. The upper bound Θ(W ) on
broadcast capacity trivially holds since each node can receive at
most W bits/sec. The capacity Θ(W ) is achieved by constructing
a connected dominating set in which we can schedule every node
in CDS to transmit at least once in constant time slots. This capac-
ity bounds also apply to random networks. Keshavarz-Haddad et
al. [10] studied the broadcast capacity with dynamic power adjust-
ment for physical interference model.

Multicast capacity was not fully studied in the literature. Jacquet
and Rodolakis [9] studied the scaling properties of multicast for
random wireless networks. They essentially studied the normalized
multicast cost, which is defined as the ratio of the number of links
in the multicast tree over the average route length from a random
source in the multicast group to a random destination in the multi-
cast group. They briefly showed that the maximum rate at which a
node can transmit multicast data is O( W√

kn log n
). Tere are similar

efforts presented in this year’s MobiHoc [18]; however, our results
subsume the others as they are special case of ours. Shakkottai et
al. [18] studied the multicast capacity of random networks when the
number of multicast sources is nε for some ε > 0, and the number
of receivers per multicast flow is n1−ε. They assume the same pro-
tocol interference model and use the dense random network model.
They show that the sum of the source rates Λ(n) that the network
can support is O(

√
nε√

log n
) w.h.p., with a per flow throughput capac-

ity of O( 1√
nε log n

) w.h.p.. This result can be implied by our results
using ns = nε and k = n1−ε. To achieve the upper bound, they
propose a novel routing architecture, called the multicast comb, to
transfer multicast data in the network. They also show that with
high probability, the load of every squarelet is within a small frac-
tion of the data rate.

In [7], the capacity of wireless networks are solved under a num-
ber of assumptions, among them point-to-point coding which ex-
cludes for example the multi-access and broadcast codes. Gastpar
and Vetterli [5] and Liu et al. [15] studied the capacity of wireless
networks when network coding can be used to improve the capac-
ity. Gastpar and Vetterli demonstrated the power of network cod-
ing: under the point-to-point coding assumption considered in [7],
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the achievable data rate is constant, independent of the number of
nodes. Liu et al. [15] showed that for multi-pair unicast traffic in
wireless multi-hop networks, the benefit of network coding and
broadcasting on the concurrent throughput rate is upper bounded
by a constant factor for both the protocol model and the physical
model. This is true for randomly deployed networks.

7. CONCLUSIONS
In this paper, we derived matching analytical upper bounds and

lower bounds on multicast capacity of a wireless network when
all nodes are uniformly and randomly deployed in a square region
with side-length a, and all nodes have the same transmission range
r. Observe that all our results are proved when the deployment re-
gion is a square with side-length a and the transmission ranges of
all nodes are uniform with value r. We can show that all our re-
sults still apply when the deployment region is a square with side
length a = 1, while the transmission range is selected appropri-

ately, i.e., r = Θ(
√

log n
πn

). We can show that our results still hold
when r = 1 while the deployment region has a bounded aspect ra-
tio such as a disk. Further, we considered the protocol interference
model for random networks. We can show that our results still hold
(with different constants) when we apply the physical interference
model (where all nodes have fixed uniform transmission power P
and fixed minimum SINR threshold) and the signal power at dis-
tance d decays as 1

dα for α > 2. The basic idea is to show that,
for such physical interference model, there is a logic transmission
range r and interference range R (with R = Θ(r)) such that when
‖u− v‖ ≤ r and no other transmitting nodes within distance R of
receiving node v, node u can always successfully send data to v.
All computations will be similar by using such logic transmission
range and interference range. The details of all computations are
omitted here due to space limit.

Notice that the results presented here did not consider the addi-
tional burden in coordinating access to wireless channels, the effect
of mobility and link failures, the effect of the need to route traffic
in a distributed way. We also did not address the delay of the route.
The delay could be caused by burst traffic or when nodes are mobile
and links are not stable. It can also be imagined that using direc-
tional antennas or beam-forming will help to improve the spatially
concurrency of transmissions and thus the capacity of the networks.

There are some interesting questions left for study for multicast
capacity. The first question is what is the multicast capacity when
the link capacity is not uniform: shorter links will have larger ca-
pacity. The second question is what is the multicast capacity when
the Gaussian channel is used, instead of assuming that each node
has a constant transmission range and has a constant data rate W .
Last but not the least question is what is the tradeoffs between the
delay and multicast capacity for random mobile networks?
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