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Abstract—In wireless sensor and actor networks (WSANs), a set of static sensor nodes and a set of (mobile) actor nodes form a

network that performs distributed sensing and actuation tasks. In [1], Abbasi et al. presented DARA, a Distributed Actor Recovery

Algorithm, which restores the connectivity of the interactor network by efficiently relocating some mobile actors when failure of an actor

happens. To restore 1 and 2-connectivity of the network, two algorithms are developed in [1]. Their basic idea is to find the smallest set

of actors that needs to be repositioned to restore the required level of connectivity, with the objective to minimize the movement

overhead of relocation. Here, we show that the algorithms proposed in [1] will not work smoothly in all scenarios as claimed and give

counterexamples for some algorithms and theorems proposed in [1]. We then present a general actor relocation problem and propose

methods that will work correctly for several subsets of the problems. Specifically, our method does result in an optimum movement

strategy with minimum movement overhead for the problems studied in [1].

Index Terms—Connectivity restoration, controlled node mobility, fault tolerance, wireless sensor and actor networks.

Ç

1 INTRODUCTION

IN recent years, we have witnessed a growing research
interest and practical applications of wireless sensor

networks (WSNs). In a WSN, a group of sensors are deployed
in a region to gather information about the physical world.
The data could be collected, and then, aggregated up toward
some sink nodes for further processing. To further improve
the efficiency and effectiveness of wireless sensor networks,
actor nodes have been introduced and integrated in the
wireless sensor networks to form wireless sensor and actor
networks (WSANs). Unlike small wireless sensor nodes,
actors are usually resource-rich devices equipped with better
processing capabilities, stronger transmission powers, and
longer battery life. In WSANs (potentially mobile), actor
nodes are deployed to perform appropriate actions upon the
environment data collected by the sensors, which allows
remote, automated interaction with the environment. Unlike
traditional control system, in a WSAN network, an actor
typically not only is capable of perform individual tasks (such

as deactivating a land mine, extinguishing a fire, and
rescuing a trapped survivor) in response to the environment,
it is also able to collaborate with other actors in a networked
system. Applications of wireless sensor and actor networks
thus may include a group of mobile robots that will optimize
their actions based on data collected from the network. A
WSAN will perceive the environment from multiple dis-
parate viewpoints based on the data gathered by a sensor
network. Since the actor nodes will perform certain tasks
immediately after collecting data from sensor nodes, the issue
of real-time communication is very important in WSANs.

In many applications, the number of sensor nodes

deployed in studying a phenomenon may be in the order
of hundreds or even thousands [10], [17]. However, such a
dense deployment is often not necessary for actor nodes
because of the different coverage requirements and physical
interaction methods of acting task. In addition, actor nodes

are often capable of moving from one place to another place
to perform a certain task in response to the changing
environment. Hence, in order to provide effective sensing
and acting, a distributed local coordination mechanism is

necessary among sensors and actors. In most applications, it
is often required that the network topology of a WSAN
should be a connected graph. Here, each node (an actor or a
wireless sensor node) is mapped to a vertex in a graph, and

two vertices are connected if the corresponding nodes can
communicate directly with each other using wireless
channels without relying on relays by other nodes. A
network is said to be k-connected if for every pair of nodes,

there are k node disjoint paths connecting these two nodes.
A k-connected network, for k � 2, is often said to be ðk� 1Þ-
fault-tolerant, for fault tolerant for simplicity. When the
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network topology is not fault tolerant, an actor failure can
cause the loss of multiple interactor communication links
and may partition the network if alternate paths among the
affected actors are not available. So, for a fault-tolerant
network, biconnectivity is required. In a biconnected net-
work, the removal of any node from the network will not
partition the network into connected components.

In the recent work [1], Abbasi et al. presented DARA, a
Distributed Actor Recovery Algorithm, which tries to
efficiently restore the connectivity of the interactor network
that has been affected by the failure of an actor. To address 1
and 2-connectivity requirements, two variants of the algo-
rithm are developed by them (DARA-1C and DARA-2C).
Due to the fact that the energy is limited in WSANs and
normally movement of nodes consumes huge energy,
compared to communication and computation processes,
their basic idea is “to identify the least set of actors that should be
repositioned in order to reestablish a particular level of con-
nectivity.” DARA strives to localize the scope of the recovery
process and minimize the movement overhead imposed on
the involved actors, although they did not explicitly prove
and verify the performances of their algorithms in terms of
this metric. Unfortunately, the paper [1] contains some
significant discrepancies that affect the correctness of the
algorithms. Here, we demonstrate it by presenting some
counterexamples to some theorems and algorithms. We also
present methods that can fix some of the discrepancies in this
paper. We then formally define the connectivity-restoration
problem and show that it can be solved in polynomial time if
the number of candidate positions of nodes is at most nþ c
for some constant c, for a network of n nodes. Observe that
for all results presented in [1], after an actor node fails, they
will move some actor nodes toward the old positions of some
other actor nodes. Thus, for a network of n actor nodes, after
one actor node failed, the number of candidate positions of
actor nodes is still n. Thus, the method proposed by us will
result in an optimal solution in the setting [1].

Designing wireless networks that are fault-tolerant, or k-
connected, and reconfiguring the network (by moving some
nodes or adding new relays) to be k-connected have been
studied extensively in the literature. Li et al. [15], [16]
showed how many nodes are needed to get a k-connected
network with high probability with random node place-
ment and proposed localized topology control method to
retain k-connectivity. Yi et al. [18] studied the asymptotic
distribution of the number of isolated nodes with Bernoulli
failures in a random network.

Several results were proposed in the literature to get a
new k-connected network after some node failures, by
moving existing alive nodes or adding new nodes. Li and
Hou [14] proved that it is NP-hard to add the minimum
number of nodes to improve the network connectivity.
Almasaeid and Kamal [3] proposed a method with objective
of minimizing the number of additional nodes needed to
repair the connectivity. Ibrahim et al. [12] also discussed
network repair problem using minimum number of addi-
tional relays. Ibrahim et al. [11] characterized the network
connectivity by Fiedler value, i.e., second smallest eigenva-
lue of the Laplacian matrix of the network. They used the
semidefinite programming approach to find the best

locations of relay nodes to improve the connectivity. Given
a network, Kashyap et al. [13] proposed a polynomial-time
method for placing some additional relay nodes for getting
a k-connected graph. The approximation ratio of their
method is 2DMST for nodes in d dimensions, where DMST is
the maximum degree of a minimum degree minimum
spanning tree of all nodes. Here, DMST ¼ 5 for two-
dimensional nodes. Given the set of duty sensors in the
plane and the upper bound of the transmission range,
Cheng et al. [5] proposed two methods to compute the
minimum number of relay sensors such that the induced
topology by all sensors is globally connected. The first
algorithm has a performance ratio of 3 and the second has a
performance ratio of 2 1

2 . See [6] for a survey of various
methods for constructing minimum cost k-connected
geometry networks.

Besides adding extra relay nodes, some approaches try to
move the existing nodes to improve the connectivity of
networks. Das et al. [7] proposed a seminal localized
movement control algorithm for wireless mobile robot
networks to establish/restore biconnectivity using p-hop
neighbor information. Atay and Bayazit [4] used k-
redundancy to check and repair the k-connectivity. Abbasi
et al. [1] proposed several methods to move nodes around
to improve the network connectivity. They assume that
every actor node already has the information about all
nodes within 2-hop.

This paper is organized as follows: We review some
definitions and algorithms presented in [1] in Section 2, and
discuss some of the results of [1] in Section 3. We also
present our method that can optimally reallocate nodes
with the minimum cost to restore the k-connectivity of the
network if it is possible. We conclude the paper in Section 4.

2 REVIEW OF RESULTS AND DEFINITIONS IN [1]

In this section, we briefly review the paper [1]. The paper [1]
focused on the connectivity reestablishment problem in
WSANs caused by single-node failure. In WSANs, there are
two kinds of nodes: mobile/static sensor nodes and mobile
actor nodes. Mobile actor nodes act as the backbone of a
WSAN; all the sensor nodes transmit their data to the
nearby actor nodes and actor nodes forward the data to the
sink node where the data are processed. Due to an actor
node’s failure, the connectivity of actor nodes could be
destroyed. So, how to reestablish the connectivity after one
actor node damaged it naturally comes forth. Note that
Abbasi et al. [1] did not consider the coverage problem; only
connectivity reestablishment problem was focused.

In [1], the authors proposed two distributed algorithms
DARA-1C and DARA-2C to address the 1 and 2-connectiv-
ity reestablishment problem, which we found not always
valid. Both DARA-1C and DARA-2C are real time and
perform cascaded relocation of actor nodes. The input of
DARA-1C (respectively, DATA-2C) is the 1-connected
(respectively, 2-connected) actor network graph. In
DARA-1C, each actor node Ai maintains its 2-hop neighbors
list, the set 2-hop-Neighbors(Ai), by using periodic heart-
beat messages. It is assumed that all nodes will maintain an
updated list of its 2-hop neighbors. Missing heartbeat
messages can be used to detect the failure of actor nodes.
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Note that not the failure of any actor node will destroy the
connectivity; only a cut vertex of the network graph of the
actor network will destroy it. Here, we call an actor node
which is a cut vertex of the network graph simply as a cut
vertex. A vertex v in a connected graph G is called cut vertex
if the removal of v will partition G. However, the paper [1]
did not mention how to distinguish cut and noncut vertices.

When a cut vertex Af fails, its heartbeat message is lost,
and thus, its neighbors will discover the failure and a
recovery procedure happens. So, it is needed to choose an
actor node ABC (called best candidate node) and relocate it to
restore connectivity. The best candidate ABC is chosen from
1-hop neighbors of Af , by the following criteria in order:
Least node degree, Closest proximity to the failed actor, and
Highest actor ID. The relocation method is as follows:

1. Node ABC sends a “MOVING” message to its
neighbors, in the set Dependents(ABC,Af ), i.e., those
1-hop neighbors of ABC that are not 1-hop neighbors
of Af , about its movement and the time it will take to
reach to the new location.

2. Node ABC moves to the exact location of the failed
node Af .

3. Node ABC broadcasts “RECOVERED” message.
Notice that since other nodes are still in their
previous positions, this broadcast “RECOVERED”
message can only be received by nodes in the same
connected component as the node ABC at the
position of failed node Af .

When relocation of ABC causes disconnectivity of actor
network, another round of relocation happens using the
same method. The detection of network disconnectivity
caused by the relocation of ABC is performed as follows:

1. The dependent neighbors (children) of ABC keep
waiting until they receive the “RECOVERED”
message indicating that the restoration process has
been completed.

2. If they did not hear the “RECOVERED” message
within the time period of 2T , where T is the time
needed by the node ABC to travel for maximum
possible distance r, they assume disconnectivity
happens and do the restoration process just as their
parent ABC did.

3. Each node will move only once.

Note that different from the original relocation, here, the
new best candidate in the children level is chosen among
the dependent neighbors of the previous best candidate
ABC . In paper [1], the authors also talked about an
optimization of DARA-1C for ring-like topologies; however,
it does not increase the asymptotic bound of converge time.

For restoring 2-connectivity after a failure of an actor node,
the authors proposed DARA-2C. First, the authors gave
several definitions of key terms which are recalled as follows:

Definition 1 [1]. The geometric convex hull [9] is the minimal
convex set of points containing a nonempty finite set of points.

Definition 2 [1]. A network periphery is the convex hull of the
nodes of the network. Since the nodes are placed in a plane, the
network periphery is a simple closed polygonal chain, unless
the nodes are collinear.

Definition 3 [1]. A connectivity hole [8] is an area in which the

edges between nodes form a closed polygonal without links
between nodes that are not adjacent on the polygonal chain.

Definition 4 [1]. A boundary node is one that is located at the
network periphery or on the closed polygonal chain surround-

ing a connectivity hole.

The definitions are illustrated in Fig. 1, which is a similar
illustration as that in [1]. Observe that their original
Definitions 1 (on convex hull), 2 (on network periphery),
and 4 (on boundary nodes) are clear and self-contained.
However, Definition 3 is not clear and confusing. For special
network examples, such as the one illustrated in Fig. 1, the
definitions are correct. Later, however, we will show that
the definitions of network periphery and connectivity hole
are not correct in all scenarios; some counterexamples will
be given. Thus, the definition of boundary node is also
incorrect. Their original definition of network periphery is
not correct, but could be fixed. Unfortunately, we could not
find a correct way to fix their original definition of
connectivity hole, and consequently, the definition of
boundary nodes, to make their algorithms correct.

The following two key theorems are the foundation
based on which DARA-2C is proposed, which are recalled
as follows:

Theorem 6 [1]. In a 2-connected network, a failure of a node Af

can cause another node AC to be a cut vertex only if Af is a

boundary node.

Theorem 7 [1]. In a 2-connected network, the biconnectivity lost
due to a failure of a node Af can be restored by repositioning

the neighbors of Af that are located at the network periphery or
on the boundary of a connectivity hole.

In DARA-2C, each actor node knows its 1-hop and 2-hop
neighbors as in DARA-1C, which includes the IDs, locations,
and node degrees of these neighbors. The paper [1] employs
the localized boundary detection algorithm proposed by [19]
to determine whether an actor node is a boundary node or
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Fig. 1. The convex polygon constructed by vertices A1; A2; . . . ; A18 is the
convex hull of the network graph and is also the network periphery by [1,
Definition 2]. By [1, Definition 3], the polygonal area constructed by
vertices A8; A9; . . . ; A27 is the connectivity hole of the network (which is a
similar illustration as [1, Fig. 6]). The network boundary node is all the
vertex A1; A2; . . . ; A27, for that they are either located on the network
periphery or on the connectivity hole.



not. We point out here that the traditional network
boundary detection method will not work for the definition
of network boundary proposed in [1]. The reason is that
traditional methods typically only detect the periphery of
the network. We later will also point out that the definition
of periphery [1] is also problematic. Abbasi et al. [1] also
employ the cut-vertex detection method proposed by [2],
which probabilistically determines whether a node is a cut
vertex or not.

Now, we briefly review DARA-2C. As in DARA-1C, the
failure actor node is detected by heartbeat message. Based
on [1, Theorem 7], the restoration process will be initiated
only on every actor node Aj 2 Neighbors(Af ), based on the
following criteria: 1) Af is a boundary node, 2) Aj is a
boundary node, and 3) the failure of Af introduces a cut
vertex in the network. Nodes satisfy that these conditions
are referred to as candidates thereafter. DARA-2C restores
the 2-connectivity of a network by relocating one of these
candidates. Two problems are addressed in DARA-2C as
that in DARA-1C: 1) which candidate node ABC (Best
Candidate) is chosen to relocate and 2) how to relocate
ABC . ABC is chosen by the following three criteria in order:
1) Lowest node degree, 2) Least distance, and 3) Highest actor
ID. The relocation of ABC works as follows:

1. If the cardinality of the candidate set is two, the
selected ABC will move toward the other candidate
until it becomes within its radio range.

2. If the cardinality of the candidate set is three or
more, the ABC will move to the position of Af .

3. Any node will move only once.

Similar to DARA-1C, when ABC stops, it broadcasts a
“RECOVERED” message, indicating the completion of the
restoration process. The neighbors of ABC will keep waiting
for the “RECOVERED” message; if they received it, they
conclude that they are still connected; otherwise, they will
assume that they got disconnected and apply [1, Theorem 7]
again as if ABC stopped functioning. This means that a node
Aj 2 NeighborsðABCÞ will move only if it is a boundary
node. The recovery process will be applied recursively to
trigger the cascaded relocation of affected actors. Each of
these boundary nodes will individually move toward ABC

and nonboundary neighbors of ABC do not need to move.

3 SOME DISCREPANCIES IN [1] AND NEW METHOD

In this section, we will briefly discuss some discrepancies
found in some methods presented in [1]. We will then fix
some discrepancies in [1] and later formally propose the
connectivity-restoration problem.

3.1 Discrepancies in Algorithm DARA-1C

The basic idea of the algorithm proposed in [1], called
DARA-1C, for 1-connectivity case is reviewed in Section 2.
We found that there is some problem when apply this
algorithm. We describe one network example in Fig. 2. In
[1], the authors stated the method to choose a new best
candidate in the child level of the old best candidate ABC as
“Thus, these detached dependents identify a BC at the
children level to relocate to the position of their parent,”
which means that the new best candidate is chosen from the

set of all the detached dependents of the old best candidate
ABC . But how can each detached dependent node know this
detached dependents set? First, the old best candidate ABC

cannot tell which dependent will be detached before its
relocation, which is because that ABC only maintains its 2-
hop neighbors’ information. In Fig. 2, ABC does not know
that A3 is connected with Af by another path, because that
A6 is not in the 2-hop neighbor table of ABC . Second, the
detached dependents could not be connected to the network
after ABC relocated and possibly they are not connected
with one another either, which means that they cannot
communicate with each other under some possible situation
as A1 and A2 in Fig. 2. Thus, this detached dependents set
cannot be learned by these detached dependents under
some situation, which leads to the case that the selection of
a new best candidate after ABC relocated cannot be
processed. In other words, detached dependents of ABC

cannot make a uniform decision on the new best candidate
node. Thus, the goal of [1] ([1, Section 4.3.3]) “. . . preventing
conflicts in the selection of the BC” could not be achieved
under some situation.

We next make a brief summary: Any best candidate node
like ABC cannot be simply treated as a failure node. The
main reason is for a real failure node Af , all of its neighbors
must have the same observation regarding the failure of Af .
On the other hand, since any node like ABC does not really
fail but just change its location, it will cause the incon-
sistency among the observation among its original neigh-
bors. As shown in previous example, the detached
dependents set cannot be computed exactly among all the
detached dependents.

3.2 Our Method for Restoring 1-Connectivity

Here, we propose a new approach in order to fix this problem.
Before the nodeABC moves to some new location, it should

unicast Dependents(ABC;Af ) (as fA1; A2; A3g in Fig. 2) to all
its dependents. And based on the criteria of selecting the best
candidate, each dependent can get a priority number, for
example, ifA3 should be the best candidate afterABC moved,
then A3 got the number 1, and A2 is the next candidate, then
A2 got the number 2. We useWi to denote the numberAi got.
LetT denote the time for traveling the distance 2r. Our refined
method, after ABC moved to the new location, is as follows:

. Each node Ai 2 DependentsðABC;AfÞ waits to re-
ceive the “RECOVERED” message in time T .
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Fig. 2. The dependents set of ABC is fA1; A2g, and the detached
dependents set of ABC after ABC relocated is fA1; A2g, but A1 and A2

themselves do not know this set. The dependents set, denoted by
Dependents(Ai;Af ) [1], is the set of actors that are neighbors of Ai but
not neighbors of Af . The detached dependents set of ABC is the subset
of Dependents(ABC;Af ) which becomes not connected to the ABC after
ABC relocated to the position of Af .



. If such a message is received, then this node does
not move.

. If such a message is not received within time T , then
wait for another T �Wi time.

- If within the T �Wi time, it received the
“RECOVERED” message, then it does not move.

- Otherwise, at the end of T �Wi time, it moves to
the location to ABC , and then, broadcast a
“RECOVERED” message.

It is not difficult to show that the neighboring nodes of
the best candidate node will have the same view on what to
do next and after the algorithm terminates, the final
structure is indeed a connected network. We mainly let
the candidate node ABC to decide the priority number of
each of its neighbors, and send the priority number
information to all its neighbors before node ABC moves.
Consequently, they will have the same decision.

3.3 Discrepancies in Algorithm DARA-2C

The most significant discrepancy happens in [1, Section 5].
We found that based on the definitions of “boundary node”
in [1], Theorem 6 is not valid at all. We first use Fig. 5 in paper
[1] to illustrate the definition of “network periphery” and
“connectivity hole.” (refer to [1] to find Fig. 5.) In [9], the
geometric convex hull of [1, Fig. 5] is the cycle defined by
vertices sequence A1; A6; A4; A12; A3; A13; A7; A5; A10. (Note
that vertices A2; A14 are not included.) The paper [1] uses the
convex hull as the network periphery. The usage of convex
hull to define network periphery as in [1] will cause some
nodes that are actually on the network periphery be excluded.

Cited in [8], Abbasi et al. define the connectivity hole as
“the area in which the edges between nodes form a closed
polygonal without links between nodes that are adjacent on the
polygonal chain,” which is unclear to understand, so we
here cite the original definition in [8]. In [8], connectivity
hole is defined as “an area where nodes cannot be placed and
edges cannot exist,” i.e., the connectivity hole is independent
with the network topology. Connectivity hole used in [8]
reflects a geographic region where we cannot physically
put nodes in. Based on the definition of connectivity hole
in [8], in [1, Fig. 5], all the nodes are not on the boundary of
a connectivity hole. Abbasi et al. [1] give the definition of
boundary node as the one located at the network periphery
(defined as convex hull) or on the closed polygonal chain
surrounding a connectivity hole (cited in [8]). With the
definition of boundary node in [1], we provide two
counterexamples for Theorem 6 [1], as shown in Fig. 3.

In Fig. 3a, the length of all the edge is 1 which is the
maximum transmission range, and the distance between A3

and A1(A2) is 1þ �, where � > 0 is an arbitrarily small
positive constant. By the definition of network periphery in
[1], we know that in Fig. 3a, the network periphery is
A1; A2; A4; A5, but the failure of A3, not on the network
periphery, can destroy the 2-connectivity of the network,
which implies that Theorem 6 [1] is incorrect.

It is clear that the network periphery in [1, Fig. 5] should
be defined by the vertices sequence A1; A6; A2; A4, A12, A3,
A13, A7, A5, A14, A10, which is possibly what was proposed
by the authors in [1].

Correct the discrepancy in paper [1]. Here, we give a
correct definition of “network periphery.”

Definition 1. The network periphery is a subgraph of the
network graph induced by the edges which can be connected to
a point infinitely far away with curves that do not cross any
edge or vertex of the network graph.

With the corrected definition of network periphery, all
the vertices in Fig. 3a are in the network periphery.

In Fig. 3b, the length of all the edges is 1, the distance
between A10 and A1(,A9; A8) is 1þ �, and the distance
between A11 and A6(, A7; A8) is 1þ �, where � > 0 is an
arbitrarily small positive constant. So, by the definition of
connectivity hole [8], there is no connectivity hole in Fig. 3b.
However, the failure of A10 (or A11) can destroy the 2-
connectivity of the network, which again illustrates the
incorrectness of [1, Theorem 6].

However, we found that it is very hard to correct the
definition of connectivity hole in [1]. Maybe the authors in
[1] wanted to define the connectivity hole as the faces which
have more than three sides, for example, A3; A4; A11; A10 in
Fig. 3b. However, by this definition, almost all the vertices
of the network graph except the ones on the network
periphery are on the boundary of connectivity hole, which
makes the definition meaningless. For example, in Fig. 3b,
A10 and A11 are on the boundary of connectivity hole and
they are the only two vertices not on the network periphery.
It seems meaningless.

In Fig. 4, we give a series of input graphs in which when
any vertex fails, there is some vertex that can become a cut
vertex. In the example, there are several circles with the
same center and a line segment crosses the center and
intersects with each circle at two intersection points. On
each intersection points, we deploy a vertex (such as
A1; A2; A3; A4; A5; A6), and deploy other vertices uniformly
on the circles and the line segment to guarantee connectiv-
ity (such as Ac1

; Ac2
; Ac3

; Ac4
; Ac5

).
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Fig. 3. The counterexamples for boundary nodes: (a) for network
periphery and (b) for connectivity hole.

Fig. 4. When any vertex fails, there is a cut vertex.



Although we cannot give an exact definition of con-
nectivity hole, when there is some failed node Af , we can
get some properties based on the subgraph induced by the
1-hop neighbors of Af . We denote the 1-hop neighbors of
Af as NðAfÞ and the subgraph induced by NðAfÞ as
G½NðAfÞ�. We claim the following lemmas:

Lemma 1. If G½NðAfÞ� is 2-connected, the failure of Af will not
destroy the 2-connectivity of the network graph.

Proof. For any two vertices u; v in the graph, there are two
internally disjoint paths P1; P2 from u to v. There are
totally three complementary cases: Case 1) both the two
paths do not contain Af , Case 2) P1 contains Af and P2

does not contain any vertex in NðAfÞ, and Case 3) P1

contains Af and P2 contains some vertices in NðAfÞ. We
will analyze these three cases separately.

Case 1. After Af fails, P1 and P2 will be the same.
Case 2. P2 will be the same after Af fails, and we can

rebuild P1 by using some nodes in NðAfÞ after Af fails,
since NðAfÞ is connected.

Case 3. P2 will be the same after Af fails. We denote
the neighbors of Af using by P2 as N2ðAfÞ. As in case 2,
P1 can be rebuilt by using some nodes in NðAfÞ; we
denote the neighbors of Af using by P1 as N1ðAfÞ. We
claim that we can always find N1ðAfÞ such that
N1ðAfÞ \N2ðAfÞ ¼ �, here, � is empty. Because Af

was in P1, so there are two nodes A1; A2 2 NðAfÞ in P1.
We know that P1 and P2 are disjoint paths, so
A1; A2 62 N2ðAfÞ. Since NðAfÞ is 2-connected, then there
are at least two disjoint paths between A1 and A2 in
NðAfÞ; one contains all the nodes in N2ðAfÞ and the
other does not contain any node in N2ðAfÞ. We choose
the one not containing any node in N2ðAfÞ to rebuild P1.

So, in all three cases, between any two nodes u and v,
there are at least two disjoint paths, i.e., the graph after
Af fails is still 2-connected. tu

Lemma 2. If G½NðAfÞ� is only 1-connected (but not 2-connected)
and a pair of nodes ðAf;AcÞ is a cut, then Ac 2 NðAfÞ.

Proof. We assume that ðAf;AcÞ is a cut and Ac 62 NðAfÞ,
when G½NðAfÞ� is 1-connected. For that, ðAf;AcÞ is a cut,
there are two disjoint paths P1 and P2, connecting two
vertices u and v such that Af 2 P1 and Ac 2 P2. For that
Ac 62 NðAfÞ and G½NðAfÞ� is 1-connected, we can rebuild
P1 by using some nodes in NðAfÞ. Thus, u and v are still
connected, which contradicts to the assumption that
ðAf;AcÞ is a cut. So, node Ac 2 NðAfÞ. tu

Even if we assume that the definition of connectivity hole is
valid and Theorem 6 in paper [1] holds, another significant
discrepancy still exists. In the paper [1], the authors cited
the localized algorithm in [19] to determine whether an
actor node is a boundary node or not. However, the
localized coverage boundary detection algorithm in [19] can
only detect the nodes located at the network periphery and
the nodes around the coverage holes. Note that the coverage
hole is quit different from connectivity hole; coverage hole
is the area which cannot be covered by the vertices and do
not consider connectivity at all. So, [19] cannot be use here
to detect the boundary nodes. Fig. 3b gives the counter-
example. Because the algorithm in [19] can only detect the
boundary of coverage hole of the Region Of Interest (ROI), in
Fig. 3b, all the ROI is covered by nodes, so the connectivity
hole cannot be detected in this example. Without detection
of boundary nodes of WSAN, algorithm DARA-2C [1]
cannot be implemented.

Even though we assume that there is some distributed algorithm
that can detect the boundary nodes (on network periphery and
the so-called connectivity hole), DARA-2C [1], based on
Theorem 7 [1] (the argument is unconvincing by just given
some example), cannot restore 2-connectivity under some
specific input of the network graph, such as Fig. 5.

In Fig. 5, the length of all the edges is 1 and the network
topology is a cycle which is 2-connected. Except the angle of
ffA1AfAn ¼ �, all the other angles formed by the adjacent
three nodes are greater than �=2 and smaller than �, for
example, �=2 < ffAi�1AiAiþ1 < �. In the network graph
illustrated in Fig. 5, Af is failed at some time, then
DARA-2C algorithm begins connectivity restoring process
for that Af is a boundary node. By DARA-2C, An is chosen
as the best candidate (ABC) and moves toward A1 until An is
within the communication range of A1, which requires that
An moves exactly to the location of Af . After some period
without hearing the “RECOVERED” message, the cascade
node begins moving. The node moves just after An is An�1

(in Fig. 5, we let i ¼ n� 2), by DARA-2C, An�1 moves
toward the previous location of the ABC which is An.
Because the angle ffAfAnAn�1 > �=2, An�1 will be relocated
at the previous location of An. The cascade moving
continues, and for each Ai, the new location is exactly the
previous location of Aiþ1. So, when A1 has moved to the
previous position of A2, the whole relocation process
terminates because each node will move only once, and
the resulted network graph is only 1-connected. Unfortu-
nately, we could not come out with some method that can
fix this algorithm.

3.4 Open Problems and Our Solution

In previous sections, we have showed that some methods
presented in [1] will not work correctly always, and then,
designed some methods that will give a correct result under
certain scenarios. We find that the problem presented in [1]
can be described as following in a more formal way:

Problem 1 (k-Connectivity restoration). Assume that we are
given a k-connected network G ¼ ðV ;EÞ (k is a given integer,
say k ¼ 1, or 2), in which each node vi 2 G has a cost function
fiðxÞ, for example, fiðxÞ ¼ ai þ bix, that denotes the total cost
of moving node vi if we need to move node vi of distance x.
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Fig. 5. A counterexample of DARA-2C. The algorithm will end with only
1-connected actor graph.



Assume that a node Af 2 V failed, design a strategy to move
nodes V n fAfg to a set of possible locations U such that the
network formed by nodes at their new locations will be k-
connected. Our goal here is to minimize the total moving cost.
Here, the set U could be infinite and no two nodes are allowed
to be at the same position.

Clearly, if fiðxÞ ¼ ai þ bix, when ai ¼ 1 and bi ¼ 0 for all
nodes vi, then our goal becomes minimizing the number of
moved nodes. When ai ¼ 0 and bi ¼ 1 for all nodes vi, then
our goal becomes minimizing the total moved distance of
all nodes.

Notice that when we know that we must move nodes to
the positions previously occupied by nodes in G, the
problem can be easily solved using maximum weighted
matching on a bi-partite graph H as follows: Given the
graph G ¼ ðV ;EÞ of n nodes V and the failure of one node
Af , let U�i ¼ V n fvig, where vi 2 V is a node in V . Here, we
use vi also to denote the location of node vi. Thus, a node w
in U�i also means that node w will take the same location as
original. We then run method MCCR(G, V n fAfg, U�i) (see
Algorithm 1 for details) to check if there is a movement for
k-connectivity restoration with the minimum cost. We will
run the above approach for all possible sets U�i (there are at
most n such sets) such that the graph G reduced to U�i is k-
connected. Among the n solutions found, we then take the
one that gives us the minimum cost. That solution will be
the final optimum solution.

Algorithm 1. Minimum Cost k-Connectivity Restoration

MCCR(G, �V ,P )

Input: k-connected network G ¼ ðV ;EÞ with n nodes V , a

set of alive nodes �V , and a set P ¼ fp1; p2; . . . ; pj �V jg of

possible new locations with size same as that of �V . A cost

function f : V � P ! Rþ specifying the cost moving a node

from position in V to a position in P .
1: We first check if the graph defined on P based on the

communication model is k-connected.

2: if it is not k-connected then

3: Return Nil, i.e., moving nodes to positions specified

by P will not result in a k-connected network.

4: else

5: We build a bi-partite graph H on two sets of nodes �V

and P . The weight of an edge vu where v 2 �V and
u 2 P is the cost M � fðv; uÞ, where M >

maxv2V ;u2P fðv; uÞ is a large number.

6: Find a maximum weighted matching in graph H.

Obviously, the matching will have j �V j edges. If vu is

an edge in the matching, then we move node v to the

position of u.

7: end if

It is easy to prove the following lemma:

Lemma 3. The maximum weighted matching computed by
Algorithm 1 gives an optimum moving strategy when the alive
nodes are �V and potential positions are P , with moving cost
specified by f .

This strategy can also be extended to solve the con-
nectivity-restoration problem when there are multiple faulty
nodes, and the cardinality of the possible positions U for all

alive nodes, denoted as �V , is �nþ c for some constant c, where
�n is the number of alive nodes �V . For each subset Ui � U that
has exactly �n positions, we run Algorithm MCCR(G, �V ,Ui) to
find an optimal moving when potential positions are Ui.
Constant c implies that the number of possible placementsUi
of alive nodes is ð�nþc�n Þ ¼ Oð�ncÞ, which, in turn, implies that
we only need to solve Oð�ncÞ number of subproblems
mentioned in previous discussions using Algorithm 1. Then,
we have the following theorem:

Theorem 1. Assume that the cost of moving a node at position x
to another position y is denoted by an arbitrary positive value
fðx; yÞ. The connectivity-restoration problem can be solved in
polynomial time for a network of n nodes when the cardinality
of the possible new locations of all alive nodes is nþ c for some
constant c and the number of failures is at most another
constant c1.

4 CONCLUSION

We show that the algorithms proposed in [1] will not work
correctly in many scenarios and we demonstrated this by
presenting some counterexamples. We also fixed some
discrepancies of [1]. We presented a centralized method
that can solve the k-Connectivity restoration problem,
including the problem studied in [1] as a special case,
when the number of potential positions of alive nodes is
only a constant more than the number of alive nodes. We
would like to solve the general open problem discussed in
the previous section, by designing both efficient centralized
and efficient distributed methods with a certain perfor-
mance guarantee.
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