Directions: Carefully write the solutions to all the problems showing all steps and work. Please submit a neat document. Do not write answers in decimal form - use whole numbers or fractions.

Misc.

1. Use the quadratic formula to find the roots of \(z^2 + (1 - i)z - i = 0 \). Explicitly check that the roots satisfy the equation.

2. Find the steady-state solution \(y(t) \) that satisfies \(y''(t) + 4y(t) = 10 \cos(3t + \pi) \). You are to convert to a new problem with the right side of the ODE containing a complex exponential. Using the class notes, guess a solution of the form \(y = Ae^{3ti} \) and find \(A \). Finally, find the real part of your solution which is the solution of the original problem. Your solution must contain the term \((3t + \pi) \).

Section 1.7

3. Express \(e^z \) at \(z = -1 + \pi i / 4 \) in \(a + bi \) form.

4. Express \(f(z) = e^{2\overline{z}} \) in \(u + iv \) form.

5. Express \(\ln(-2 + 2i) \) in \(a + bi \) form.

6. Solve \(e^{z-1} = -ie^2 \).

7. If \(z_1 = i \) and \(z_2 = -1 + i \), does \(\ln(z_1z_2) = \ln(z_1) + \ln(z_2) \).

8. Express \(\sin(-2i) \) in \(a + bi \) form.

9. Find all values of \(z \) such that \(\cos z = -3i \).

Section 2.1

10. Evaluate \(f(z) = 4z + i\overline{z} - \text{Re}(z) \) at \(z = 4 - 6i \).

11. At what points are the following functions not analytic

 (a) \(\frac{z}{z - 3i} \)

 (b) \(\frac{z^2 - 2iz}{z^2 + 4} \)
12. The function \(f(z) = z^3 \) is analytic for all \(z \).

(a) Show the Cauchy-Riemann equations are satisfied for all \(z \).

(b) Compute \(f'(z) \) using the differentiation rules since \(f \) is only a function of \(z \).

(c) Use the Cauchy-Riemann equations to compute \(f' \) and show the result is the same as in (b).

13. Compute \(f' \) is \(f(z) = \frac{4z^3 - 5z + 1}{2z - 1} \).

14. Use the Cauchy-Riemann equations to show that the following functions are not analytic at any point. Explain your conclusion.

(a) \(f(z) = y + ix \)

(b) \(f(z) = \bar{z}^2 \)

(c) \(f(z) = 2x^2 + y + i(y^2 - x) \)