1. Let \(l^\infty \) denote all bounded sequences of real numbers. For \(x = (x_1, x_2, \ldots) \in l^\infty \), define
\[
\|x\| = \sup_i |x_i|.
\] (1)

(a) Show that \(l^\infty \) equipped with Eq. (1) is a normed linear space.
(b) Is \(l^\infty \) a Banach space? Why?

2. For \(x_n = \ln(n+2) - \ln n \) for \(n = 1, 2, \ldots \), find \(\lim \sup x_n \) and \(\lim \inf x_n \).

1.3 (a) Let \(x = (x_1, x_2, \ldots, x_n, \ldots) \), \(y = (y_1, y_2, \ldots, y_n, \ldots) \).
\[
x + y = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n, \ldots), \quad \lambda x = (\lambda x_1, \lambda x_2, \ldots, \lambda x_n, \ldots)
\]
Since the addition and scalar multiplication are defined componentwise, the properties of real numbers lead to the properties of linear space:
\[
x + y = y + x, \quad (x + y) + z = x + (y + z), \quad \lambda(x + y) = \lambda x + \lambda y,
\]
\[
\|\lambda x\| = |\lambda| \|x\|.
\]
Also the sum of bounded seq is bounded, that the scalar multipli- of
a bdd seq is bdd.

\[\varepsilon \]

\[
\text{norm} : \quad \|x\| = \sup_i |x_i| \geq 0 \quad (\text{non-neg.})\]
\[
\|\lambda x\| = |\lambda| \|x\|.\]

If \(\|x\| = 0 \), then \(x = 0 \) for all \(i \). \(\sup_i |x_i| = 0 \).

Thus, \(\|x\| \) is a norm.

(b) \(l^\infty \) is a Banach space.

Pf: Let \(\{x^{(k)}\}_{k=1}^{\infty} \) be a Cauchy seq in \(l^\infty \). Then, \(\{x^{(k)}\}_{k=1}^{\infty} \) is a Cauchy seq. in \(\mathbb{R} \) for each \(i \).

\(\mathbb{R} \) is complete. \((x^{(k)}) \) converges as \(k \to \infty \), denote the limit by \(x_i \), and \(x = (x_1, x_2, \ldots, x_n, \ldots) \).

Then, \(x^{(n)} \to x \) as \(k \to \infty \). \(x \) is bounded; because \(\{x^{(k)}\} \subset l^\infty \) and is Cauchy seq.

Choose \(\varepsilon = 1 \), \(\|x^{(n)} - x^{(m)}\| \leq 1 \) for some \(N_n > 0 \) and \(m > N \).

Thus, \(\|x^{(n)}\| = \|x^{(n)} + x^{(m)} - x^{(m)}\| \leq \|x^{(m)}\| + \|x^{(m)} - x^{(n)}\| \leq \|x^{(n)}\| + 1 \).

Thus, \(x \in l^\infty \). \(\square \)

2. \(\{x^{(n)}\} \) Cauchy: \(\forall \varepsilon > 0, \exists N_0 \) st. \(\|x^{(m)} - x^{(n)}\| \leq \varepsilon \) for \(m, n > N \).

Let \(n \to \infty \), \(\|x^{(n)} - x^{(n)}\| = \varepsilon \) for \(m > N \). \(\varepsilon \) for \(m > N \). Thus, \(\|x^{(n)} - x\| \leq \varepsilon \) for \(m > N \).

Thus, \(x_n \) is a decreasing seq. of \(n \).

\[
\lim \sup x_n = \lim \inf x_n = \ln 1 = 0
\]

2. \(x_n = \ln(n+2) - \ln n = \ln n^2/n = \ln(n+2/n) \). \(\ln x \) is an increasing func. of \(x \).

\(x_n \) is a decreasing seq. of \(n \). \(\lim \sup x_n = \lim \inf x_n = \ln 1 = 0 \).