GAIL—Guaranteed Automatic Integration Library in MATLAB: Documentation for Version 2.3.1*

Sou-Cheng T. Choi¹, Yuhan Ding², Fred J. Hickernell³, Lan Jiang⁴, Lluís Antoni Jiménez Rugama⁵, Da Li⁶, Jagadeeswaran Rathinavel⁷, Xin Tong⁸, Kan Zhang⁹, Yizhi Zhang¹⁰, and Xuan Zhou¹¹

¹⁻¹¹ Illinois Institute of Technology
¹ Kamakura Corporation
⁴Compass Inc.
⁵UBS
⁷Wi-Tronix, LLC
⁸University of Illinois, Chicago
¹⁰Jamran International Inc.
¹¹J.P. Morgan

Jun 21, 2020

*Email: gail-users@googlegroups.com. Our work was supported in part by the National Science Foundation under grants NSF-DMS-1522687 and NSF-DMS-1115392; and by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under contract DE-AC02-06CH11357.
Contents

1 **Introduction** ... 1
 1.1 Downloads .. 1
 1.2 Requirements .. 1
 1.3 Documentation ... 1
 1.4 General Usage Notes 1
 1.5 Installation Instruction 2
 1.6 Tests .. 3
 1.7 Contact Information 3
 1.8 Website .. 3
 1.9 Known Issues .. 3

2 **Release Notes** .. 4
 2.1 Major changes in algorithms 4
 2.2 Major changes in publications 4
 2.3 Bug Fixes ... 4

3 **funappx_g** .. 5
 3.1 Syntax .. 5
 3.2 Description .. 5
 3.3 Guarantee .. 6
 3.4 Examples ... 6
 3.5 See Also ... 7

4 **funmin_g** ... 8
 4.1 Syntax .. 8
 4.2 Description .. 8
 4.3 Guarantee .. 9
 4.4 Examples ... 9
 4.5 See Also ... 11

5 **integral_g** .. 12
 5.1 Syntax .. 12
 5.2 Description .. 12
 5.3 Guarantee .. 13
 5.4 Examples ... 13
 5.5 See Also ... 14

6 **meanMC_g** ... 15
 6.1 Syntax .. 15
 6.2 Description .. 15
 6.3 Guarantee .. 16
 6.4 Examples ... 17
 6.5 See Also ... 17

7 **meanMC_CLT** .. 18
 7.1 Syntax .. 18
 7.2 Description .. 18
 7.3 Examples ... 19
 7.4 See Also ... 20
8 cubMC_g
- 8.1 Syntax ... 21
- 8.2 Description .. 21
- 8.3 Guarantee .. 23
- 8.4 Examples ... 23
- 8.5 See Also .. 24

9 cubLattice_g
- 9.1 Syntax ... 25
- 9.2 Description ... 25
- 9.3 Guarantee .. 27
- 9.4 Examples ... 27
- 9.5 See Also .. 28

10 cubSobol_g
- 10.1 Syntax ... 29
- 10.2 Description .. 29
- 10.3 Guarantee .. 31
- 10.4 Examples ... 31
- 10.5 See Also .. 32

11 cubBayesLattice_g
- 11.1 Syntax ... 33
- 11.2 Description .. 33
- 11.3 Guarantee .. 34
- 11.4 Examples ... 35
- 11.5 See Also .. 37

12 cubBayesNet_g
- 12.1 Syntax ... 38
- 12.2 Description .. 38
- 12.3 Guarantee .. 39
- 12.4 Examples ... 39
- 12.5 See Also .. 41

13 Demos
- 13.1 A GUI (graphical user interface) for funappx_g .. 42
- 13.2 Compare funmin_g with fminbnd and chebfun .. 44
- 13.3 Integrate a spiky function using integral_g ... 47
- 13.4 Counting the success rate of meanMC_g .. 49
- 13.5 Estimation of normal probabilities by by multiple integration algorithms in GAIL .. 49
Open Source License

Copyright © 2020, Illinois Institute of Technology. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- Neither the name of Illinois Institute of Technology nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS “AS IS” AND WITHOUT ANY WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR USE AND NON-INFRINGEMENT, ALL OF WHICH ARE HEREBY EXPRESSLY DISCLAIMED. MOREOVER, THE USER OF THE SOFTWARE UNDERSTANDS AND AGREES THAT THE SOFTWARE MAY CONTAIN BUGS, DEFECTS, ERRORS AND OTHER PROBLEMS THAT COULD CAUSE SYSTEM FAILURES, AND ANY USE OF THE SOFTWARE SHALL BE AT USER'S OWN RISK. THE COPYRIGHT HOLDERS AND CONTRIBUTORS MAKES NO REPRESENTATION THAT THEY WILL ISSUE UPDATES OR ENHANCEMENTS TO THE SOFTWARE.

IN NO EVENT WILL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL, EXEMPLARY OR PUNITIVE DAMAGES, INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR INTERRUPTION OF USE OR FOR LOSS OR INACCURACY OR CORRUPTION OF DATA, LOST PROFITS, OR COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, HOWEVER CAUSED (INCLUDING BUT NOT LIMITED TO USE, MISUSE, INABILITY TO USE, OR INTERRUPTED USE) AND UNDER ANY THEORY OF LIABILITY, INCLUDING BUT NOT LIMITED TO CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND WHETHER OR NOT THE COPYRIGHT HOLDER AND CONTRIBUTORS WAS OR SHOULD HAVE BEEN AWARE OR ADVISED OF THE POSSIBILITY OF SUCH DAMAGE OR FOR ANY CLAIM ALLEGING INJURY RESULTING FROM ERRORS, OMISSIONS, OR OTHER INACCURACIES IN THE SOFTWARE OR DESTRUCTIVE PROPERTIES OF THE SOFTWARE. TO THE EXTENT THAT THE LAWS OF ANY JURISDICTIONS DO NOT ALLOW THE FOREGOING EXCLUSIONS AND LIMITATION, THE USER OF THE SOFTWARE AGREES THAT DAMAGES MAY BE DIFFICULT, IF NOT IMPOSSIBLE TO CALCULATE, AND AS A RESULT, SAID USER HAS AGREED THAT THE MAXIMUM LIABILITY OF THE COPYRIGHT HOLDER AND CONTRIBUTORS SHALL NOT EXCEED US$100.00.

1 Introduction

Automatic and adaptive approximation, optimization, or integration of functions in a cone with guarantee of accuracy is a relatively new paradigm [12]. Our purpose is to create an open-source MATLAB package, Guaranteed Automatic Integration Library (GAIL) [9], following the philosophy of reproducible research championed by Claerbout [11] and Donoho [2], and sustainable practices of robust scientific software development [21, 22, 20]. For our conviction that true scholarship in computational sciences are characterized by reliable reproducibility [5, 7, 4], we employ the best practices in mathematical research and software engineering known to us and available in MATLAB.

The rest of this document describes the key features of functions in GAIL, which includes one-dimensional function approximation [6, 13, 12] and minimization [6, 28] using linear splines, one-dimensional numerical integration using trapezoidal rule [12], and last but not least, mean estimation and multidimensional integration by Monte Carlo methods [19, 17] or Quasi Monte Carlo methods [26, 25, 24, 23, 18].

If you find GAIL helpful in your work, please support us by citing the software [8], related papers and materials following the practices recommended by citing research software [27].

Note that some of our GAIL algorithms are being ported to an open-source Python package for Quasi-Monte Carlo methods (QMCPy) [10].

1.1 Downloads

GAIL can be downloaded from http://gailgithub.github.io/GAIL_Dev/.

Alternatively, you can get a local copy of the GAIL repository with this command:

```bash
git clone https://github.com/GailGithub/GAIL_Dev.git
```

1.2 Requirements

You will need to install MATLAB 7 or a later version.

GAIL is developed in MATLAB versions R2016a to R2020a. In particular, three of our core algorithms, cubSobol_g, cubBayesNet_g, and cubBayesLattice_g require the following MATLAB add-on toolboxes: Signal Processing Toolbox, Optimization Toolbox, Statistics and Machine Learning Toolbox. In MATLAB, we could use the following command to find out toolbox dependencies of an algorithm:

```matlab
names = dependencies.toolboxDependencyAnalysis('cubBayesNet_g')
```

For development and testing purposes, we use the third-party toolboxes, Chebfun version 5.7.0 and Doctest for MATLAB, version 2010.

1.3 Documentation

Detailed documentation is available at GAIL_Matlab/Documentation/html/GAIL.html.

You can also go to MATLAB’s Help. Under the section of Supplemental Software, you will find GAIL Toolbox’s searchable HTML documentation.

A PDF version of GAIL’s documentation with selected examples is available at https://github.com/GailGithub/GAIL_Dev/blob/master/Documentation/gail_ug_2_3_1.pdf

1.4 General Usage Notes

GAIL version 2.3.1 [8] includes the following algorithms:

1. `funappx_g` [6, 13, 12]: One-dimensional function approximation on bounded interval
2. **funmin.g** [6, 28]: global minimum value of univariate function on a closed interval

3. **integral.g** [29, 12]: One-dimensional integration on bounded interval

4. **meanMC.g** [19, 17]: Monte Carlo method for estimating mean of a random variable

5. **cubMC.g** [19, 17]: Monte Carlo method for numerical multiple integration

6. **cubLattice.g** [26]: Quasi-Monte Carlo method using rank-1 Lattices cubature for d-dimensional integration

7. **cubSobol.g** [26, 18, 23]: Quasi-Monte Carlo method using Sobol’ cubature for d-dimensional integration

8. **cubBayesLattice.g** [25]: Bayesian cubature method for d-dimensional integration using lattice points

9. **cubBayesNet.g** [25, 24]: Bayesian cubature method for d-dimensional integration using Sobol points

10. **meanMC_CLT**: Monte Carlo method with Central Limit Theorem (CLT) confidence intervals for estimating mean of a random variable

Each one of our key GAIL algorithms, with the exception of **cubBayesLattice.g** and **cubBayesNet.g**, can parse inputs with the following three patterns of APIs, where f is a real-valued MATLAB function or function handle; **in_param** and **out_param** are MATLAB structure arrays; and x is an estimated output:

1. Ordered input values:

 \[
 [x, \text{out_param}] = \text{algo}(f, \text{inputVal}1, \text{inputVal}2, \text{inputVal}3, \ldots)
 \]

2. Input structure array:

 \[
 [x, \text{out_param}] = \text{algo}(f, \text{in_param})
 \]

3. Ordered input values, followed by optional name-value pairs:

 \[
 [x, \text{out_param}] = \text{algo}(f, 'input2', \text{inputVal}2, 'input3', \text{inputVal}3, \ldots)
 \]

For object classes **cubBayesLattice.g** and **cubBayesNet.g**, the output pattern is \([\text{out}, x]\), where \text{out} is an instance of the corresponding object class.

1.5 Installation Instruction

1. Unzip the contents of the zip file to a directory and maintain the existing directory and subdirectory structure. (Please note: If you install into the toolbox subdirectory of the MATLAB program hierarchy, you will need to click the button “Update toolbox path cache” from the File/Preferences... dialog in MATLAB.)

2. In MATLAB, add the GAIL directory to your path. This can be done by running **GAIL_INSTALL.m**. Alternatively, this can be done by selecting “File/Set Path...” from the main or Command window menus, or with the command **pathtool**. We recommend that you select the “Save” button on this dialog so that GAIL is on the path automatically in future MATLAB sessions.

3. To check if GAIL is installed successfully, type **help funappx.g** to see if its documentation shows up.

Alternatively, you could do this:

1. Download **DownloadInstallGail_2_3_1.m** and put it where you want GAIL to be installed.

2. Execute it in MATLAB.

To uninstall GAIL, execute **GAIL_Uninstall**.

To reinstall GAIL, execute **GAIL_INSTALL**.
1.6 Tests

We provide quick doctests for each of the functions above. To run doctests in `funappx_g`, for example, issue the command `doctest funappx_g`.

We also provide unit tests for MATLAB version 8 or later. To run unit tests for `funmin_g`, for instance, execute `run(ut_funmin_g)`.

We execute automated nightly fast tests and weekly long tests on our server. Moreover, these tests are now conducted for all MATLAB versions from R2016a to R2020a. The test reports are available on Mega cloud storage at https://mega.nz/. More specifically, fast and long test reports are archived in text files, `gail_daily_tests*.out` and `gail_weekly_tests*.out` at https://mega.nz/folder/FlMEj15a#jVixXyAoI05ppbCstzS8yEg respectively. Output files such as images of test scripts are archived at https://mega.nz/folder/I0cAEKJD#AyQ-Stmxkknf1suEWO_jnA

1.7 Contact Information

Please send any queries, questions, or comments to
gail-users@googlegroups.com

1.8 Website

For more information about GAIL, visit GAIL project website.

1.9 Known Issues

During our documentation development with MATLAB releases 2019a and 2020a, the software’s internal HTML viewer is found to display LaTeX expression in larger font size than it is intended to be. This is an aesthetic issue with no impact on the content accuracy. Users may use a web browser to view our HTML documentation instead. The main page to GAIL’s HTML documentation is `GAIL.html`, located in the subfolder, `Documentation/html/`.
2 Release Notes

2.1 Major changes in algorithms

In this release, we have a new algorithm called **cubBayesNet.g**. Similar to **cubBayesLattice.g**, it is an automatic Bayesian cubature that considers the integrand a realization of a Gaussian process. **Cub-BayesNet.g** uses Sobol points whereas **cubBayesLattice.g** uses lattice points.

2.2 Major changes in publications

In the folder **Papers**, we have added a few recently published research articles and theses related to our core algorithms.

First, we have Rathinavel’s 2019 PhD thesis [24] and his joint publication with Hickernell [25] that develop the theory behind **cubBayesLattice.g** and **cubBayesNet.g**.

In addition, we have included Ding, Hickernell, and Jiménez Rugama’s recent paper, *An Adaptive Algorithm Employing Continuous Linear Functionals* [14].

2.3 Bug Fixes

In the previous versions of GAIL, three of our multiple integration algorithms, **cubMC.g**, **cubLattice.g**, and **cubSobol.g** when applied to an integral on a non-unit hypercube with respect to uniform measure, the numerical approximations omitted the proper normalization constant, i.e., dividing by the volume of the hypercube. This problem has been resolved in this release. We illustrate the bug fix with the simple example below. Consider $f(x, y) = \exp(-x^2 - y^2)$ with $(x, y) \in D := [-1, 2]^2$. Integrating f with respect to the Lebesgue measure, we obtain

$$I = \int_D f(x) \, dy \, dx = \frac{\pi}{4} (\text{erf}(1) + \text{erf}(2))^2 \approx 2.65333.$$

Integrating f with respect to the uniform measure m, we have instead,

$$\int_D f(x) \, m(dx) = \frac{1}{m(D)} I = \frac{1}{9} I \approx 0.29481,$$

since the integration domain has volume $m(D) = 9$; see, for example, [3]. Our GAIL functions by default integrate with respect to the uniform measure, but previous versions returned answers with respect to the Lebesgue measure.
3 funappx_g

1-D guaranteed locally adaptive function approximation (or function recovery) on \([a, b]\)

3.1 Syntax

fappx = funappx_g(f)

fappx = funappx_g(f,a,b,abstol)

fappx = funappx_g(f,'a',a,'b',b,'abstol',abstol)

fappx = funappx_g(f,in_param)

[fappx, out_param] = funappx_g(f,...)

3.2 Description

fappx = funappx_g(f) approximates function f on the default interval \([0,1]\) by an approximated function handle fappx within the guaranteed absolute error tolerance of 1e-6. When Matlab version is higher or equal to 8.3, fappx is an interpolant generated by griddedInterpolant. When Matlab version is lower than 8.3, fappx is a function handle generated by ppval and interp1. Input f is a function handle. The statement \(y = f(x)\) should accept a vector argument x and return a vector y of function values that is of the same size as x.

fappx = funappx_g(f,a,b,abstol) for a given function f and the ordered input parameters that define the finite interval \([a,b]\), and a guaranteed absolute error tolerance abstol.

fappx = funappx_g(f,'a',a,'b',b,'abstol',abstol) approximates function f on the finite interval \([a,b]\), given a guaranteed absolute error tolerance abstol. All four field-value pairs are optional and can be supplied in different order.

fappx = funappx_g(f,in_param) approximates function f on the finite interval \([\text{in_param}.a,\text{in_param}.b]\), given a guaranteed absolute error tolerance \(\text{in_param.abstol}\). If a field is not specified, the default value is used.

[fappx, out_param] = funappx_g(f,...) returns an approximated function fappx and an output structure out_param.

Properties
- fappx can be used for linear extrapolation outside \([a,b]\).

Input Arguments
- f — input function
- in_param.a — left end point of interval, default value is 0.
- in_param.b — right end point of interval, default value is 1.
- in_param.abstol — guaranteed absolute error tolerance, default value is 1e-6.

Optional Input Arguments
- in_param.ninit — initial number of subintervals. Default to 20.
- in_param.nmax — when number of points hits the value, iteration will stop, default value is 1e7.
- in_param.maxiter — max number of iterations, default value is 1000.
Output Arguments

- fappx — approximated function handle (Note: When Matlab version is higher or equal to 8.3, fappx is an interpolant generated by griddedInterpolant. When Matlab version is lower than 8.3, fappx is a function handle generated by ppval and interp1.)
- out.param.f — input function.
- out.param.a — left end point of interval.
- out.param.b — right end point of interval.
- out.param.abstol — guaranteed absolute error tolerance.
- out.param.maxiter — max number of iterations.
- out.param.ninit — initial number of subintervals.
- out.param.exitflag — this is a vector with two elements, for tracking important warnings in the algorithm. The algorithm is considered successful (with out.param.exitflag == [0 0]) if no other flags arise warning that the results are not guaranteed. The initial value is [0 0] and the final value of this parameter is encoded as follows:
 - [1 0]: If reaching overbudget. It states whether the max budget is attained without reaching the guaranteed error tolerance.
 - [0 1]: If reaching overiteration. It states whether the max iterations is attained without reaching the guaranteed error tolerance.
- out.param.iter — number of iterations.
- out.param.npoints — number of points we need to reach the guaranteed absolute error tolerance.
- out.param.errest — an estimation of the absolute error for the approximation.

3.3 Guarantee

Please check the details of the guarantee in [6].

3.4 Examples

Example 1 Approximate function x^2 on $[-2, 2]$ with error tolerance 10^{-7}, default cost budget and initial number of subintervals 18.

```matlab
f = @(x) x.^2; [~, out_param] = funappx_g(f,-2,2,1e-7,18)
```

```matlab
out_param =
  a: -2
  abstol: 1.0000e-07
  b: 2
  f: @(x)x.^2
  maxiter: 1000
  ninit: 18
  nmax: 10000000
  exitflag: [0 0]
  iter: 12
  npoints: 36865
  errest: 2.9448e-08
```
Example 2 Approximate function x^2 on $[-2, 2]$ with default error tolerance, default cost budget and initial number of subintervals 17.

```matlab
f = @(x) x.^2;
[~, out_param] = funappx_g(f,'a',-2,'b',2,'ninit',17)
```

```matlab
out_param =
    a: -2
    abstol: 1.0000e-06
    b: 2
    f: @(x)x.^2
    maxiter: 1000
    ninit: 17
    nmax: 10000000
    exitflag: [0 0]
    iter: 10
    npoints: 8705
    errest: 5.2896e-07
```

Example 3 Approximate function x^2 on $[-5, 5]$ with error tolerance 10^{-6}, default cost budget and initial number of subintervals 18.

```matlab
clear in_param; in_param.a = -5; in_param.b = 5; f = @(x) x.^2;
in_param.abstol = 10^(-6); in_param.ninit=18;
[~, out_param] = funappx_g(f,in_param)
```

```matlab
out_param =
    a: -5
    abstol: 1.0000e-06
    b: 5
    f: @(x)x.^2
    maxiter: 1000
    ninit: 18
    nmax: 10000000
    exitflag: [0 0]
    iter: 11
    npoints: 18433
    errest: 7.3654e-07
```

3.5 See Also

interp1, griddedInterpolant, integral_g, funmin_g, meanMC_g, cubMC_g
4 funmin_g

1-D guaranteed locally adaptive function optimization on \([a, b]\)

4.1 Syntax

\[
\begin{align*}
\text{fmin} & = \text{funmin.g}(f) \\
\text{fmin} & = \text{funmin.g}(f, a, b, \text{abstol}) \\
\text{fmin} & = \text{funmin.g}(f, 'a', a, 'b', b, 'abstol', \text{abstol}) \\
\text{fmin} & = \text{funmin.g}(f, \text{in.param}) \\
[fmin, \text{out.param}] & = \text{funmin.g}(f, ...)
\end{align*}
\]

4.2 Description

\[
\text{fmin} = \text{funmin.g}(f) \text{ finds minimum value of function f on the default interval } [0,1] \text{ within the guaranteed absolute error tolerance of } 1e-6. \text{ Input f is a function handle.}
\]

\[
\text{fmin} = \text{funmin.g}(f, a, b, \text{abstol}) \text{ finds minimum value of function f with ordered input parameters that define the finite interval } [a, b], \text{ and a guaranteed absolute error tolerance abstol.}
\]

\[
\text{fmin} = \text{funmin.g}(f, 'a', a, 'b', b, 'abstol', \text{abstol}) \text{ finds minimum value of function f on the interval } [a, b] \text{ with a guaranteed absolute error tolerance. All three field-value pairs are optional and can be supplied in different order.}
\]

\[
\text{fmin} = \text{funmin.g}(f, \text{in.param}) \text{ finds minimum value of function f on the interval } [\text{in.param.a, in.param.b}] \text{ with a guaranteed absolute error tolerance in.param.abstol. If a field is not specified, the default value is used.}
\]

\[
[fmin, \text{out.param}] = \text{funmin.g}(f, ...) \text{ returns minimum value fmin of function f and an output structure out.param.}
\]

Input Arguments

- \(f \) — input function.
- \(\text{in.param.a} \) — left end point of interval, default value is 0.
- \(\text{in.param.b} \) — right end point of interval, default value is 1.
- \(\text{in.param.abstol} \) — guaranteed absolute error tolerance, default value is 1e-6.

Optional Input Arguments

- \(\text{in.param.ninit} \) — initial number of subintervals. Default to 20.
- \(\text{in.param.nmax} \) — cost budget, default value is 1e7.
- \(\text{in.param.maxiter} \) — max number of iterations, default value is 1000.

Output Arguments

- \(\text{out.param.f} \) — input function
- \(\text{out.param.a} \) — left end point of interval
• `out_param.b` — right end point of interval

• `out_param.abstol` — guaranteed absolute error tolerance

• `out_param.nmax` — cost budget

• `out_param.ninit` — initial number of points we use

• `out_param.npoints` — number of points needed to reach the guaranteed absolute error tolerance

• `out_param.exit` — this is a vector with two elements, for tracking important warnings in the algorithm. The algorithm is considered successful (with `out_param.exit == [0 0]`) if no flags arise warning that the results are not guaranteed. The initial value is `[0 0]` and the final value of this parameter is encoded as follows:

 `[1 0]`: If reaching overbudget. It states whether the max budget is attained without reaching the guaranteed error tolerance.

 `[0 1]`: If reaching overiteration. It states whether the max iterations is attained without reaching the guaranteed error tolerance.

• `out_param.errest` — estimation of the absolute error bound

• `out_param.iter` — number of iterations

• `out_param.intervals` — the intervals containing point(s) where the minimum occurs. Each column indicates one interval where the first raw is the left point and the second row is the right point.

4.3 Guarantee

Please check the details of the guarantee in [6].

4.4 Examples

Example 1 Minimize function $\exp(0.01(x-0.5)^2)$ with default input parameters.

```matlab
f = @(x) exp(0.01*(x-0.5).^2); [fmin,out_param] = funmin_g(f)
```

```
fmin =
   1
out_param =
    f: @(x)exp(0.01*(x-0.5).^2)
    a: 0
    b: 1
    abstol: 1.0000e-06
    ninit: 20
    nmax: 1000000
    maxiter: 1000
    exitflag: [0 0]
    iter: 5
    npoints: 69
    errest: 2.5955e-07
    intervals: [2x1 double]
```

Example 2 Minimize function $\exp(0.01(x-0.5)^2)$ on $[-2, 2]$ with error tolerance 10^{-7}, cost budget 1000000, initial number of points 10.

```matlab
f = @(x) exp(0.01*(x-0.5).^2); [fmin,out_param] = funmin_g(f,-2,2,1e-7,10,1000000)
```
fmin =
 1
out_param =
 f: @(x)exp(0.01*(x-0.5).^2)
 a: -2
 b: 2
 abstol: 1.0000e-07
 ninit: 10
 nmax: 1000000
 maxiter: 1000
 exitflag: [0 0]
 iter: 9
 npoints: 79
 errest: 6.1251e-08
 intervals: [2x1 double]

Example 3 Minimize function $\exp(0.01(x - 0.5)^2)$ on $[-13, 8]$ with error tolerance 10^{-7}, cost budget 1000000, initial number of points 100.

clear in_param; in_param.a = -13; in_param.b = 8;
in_param.abstol = 1e-7;
in_param.ninit = 100;
in_param.nmax = 10^6;
[fmin,out_param] = funmin_g(f,in_param)

fmin =
 1.0000e+00
out_param =
 f: @(x)exp(0.01*(x-0.5).^2)
 a: -13
 b: 8
 abstol: 1.0000e-07
 ninit: 100
 nmax: 1000000
 maxiter: 1000
 exitflag: [0 0]
 iter: 8
 npoints: 203
 errest: 6.7816e-08
 intervals: [2x1 double]

Example 4 Minimize function $\exp(0.01(x - 0.5)^2)$ on $[-2, 2]$ with error tolerance 10^{-5}, cost budget 1000000, initial number of points 64.

f=@(x) exp(0.01*(x-0.5).^2);
[fmin,out_param] = funmin_g(f,'a',-2,'b',2,'ninit',64,'nmax',1e6,'abstol',1e-5)

fmin =
 1
out_param =
 f: @(x)exp(0.01*(x-0.5).^2)
 a: -2
 b: 2
 abstol: 1.0000e-05
ninit: 64
nmax: 1000000
maxiter: 1000
exitflag: [0 0]
iter: 3
npoints: 107
errest: 8.0997e-06
intervals: [2x1 double]

4.5 See Also
fminbnd, funappx_g, integral_g
5 integral_g

1-D guaranteed function integration using Simpson's rule

5.1 Syntax

\[q = \text{integral}_g(f) \]

\[q = \text{integral}_g(f,a,b,abstol) \]

\[q = \text{integral}_g(f,'a',a,'b',b,'abstol',abstol) \]

\[q = \text{integral}_g(f,in_param) \]

\[[q, out_param] = \text{integral}_g(f,...) \]

5.2 Description

q = integral_g(f) computes q, the definite integral of function f on the interval \([a,b]\) by Simpson’s rule with in a guaranteed absolute error of 1e-6. Default starting number of sample points taken is 100 and default cost budget is 1e7. Input f is a function handle. The function \(y = f(x) \) should accept a vector argument \(x \) and return a vector result \(y \), the integrand evaluated at each element of \(x \).

q = integral_g(f,a,b,abstol) computes q, the definite integral of function f on the finite interval \([a,b]\) by Simpson’s rule with the ordered input parameters, and guaranteed absolute error tolerance abstol.

q = integral_g(f,'a',a,'b',b,'abstol',abstol) computes q, the definite integral of function f on the finite interval \([a,b]\) by Simpson’s rule within a guaranteed absolute error tolerance abstol. All four field-value pairs are optional and can be supplied.

q = integral_g(f,in_param) computes q, the definite integral of function f by Simpson’s rule within a guaranteed absolute error in_param.abstol. If a field is not specified, the default value is used.

[q, out_param] = integral_g(f,...) returns the approximated integration q and output structure out_param.

Input Arguments

- \(f \) — input function
- \(in_param.a \) — left end of the integral, default value is 0
- \(in_param.b \) — right end of the integral, default value is 1
- \(in_param.abstol \) — guaranteed absolute error tolerance, default value is 1e-6

Optional Input Arguments

- \(in_param.nlo \) — lowest initial number of function values used, default value is 10
- \(in_param.nhi \) — highest initial number of function values used, default value is 1000
- \(in_param.nmax \) — cost budget (maximum number of function values), default value is 1e7

Output Arguments

- \(q \) — approximated integral
- \(out_param.f \) — input function
• out_param.a — low end of the integral
• out_param.b — high end of the integral
• out_param.abstol — guaranteed absolute error tolerance
• out_param.nlo — lowest initial number of function values
• out_param.nhi — highest initial number of function values
• out_param.nmax — cost budget (maximum number of function values)
• out_param.ninit — initial number of points we use, computed by nlo and nhi
• out_param.hcut — cut off value of the largest width between points used to estimate the third derivative of the function. See [29] for details.
• out_param.exceedbudget — it is true if the algorithm tries to use more points than cost budget, false otherwise.
• out_param.exceedbudget — it is true if the algorithm tries to use more points than cost budget, false otherwise.
• out_param.conechange — it is true if the cone constant has been changed, false otherwise. See [29] for details. If true, you may wish to change the input in_param.ninit to a larger number.
• out_param.npoints — number of points we need to reach the guaranteed absolute error tolerance abstol.
• out_param.errest — approximation error defined as the differences between the true value and the approximated value of the integral.

5.3 Guarantee
Please check the details of the guarantee in [29].

5.4 Examples
Example 1 Integrate function x^2 with default input parameter to make the error less than 10^{-6}.

```matlab
[q, out_param] = integral_g(@(x) x.^2)
```

```
q =
   0.3333
out_param =
   f: @(x)x.^2
   a: 0
   b: 1
   abstol: 1.0000e-06
   nlo: 10
   nhi: 1000
   nmax: 1000000
   ninit: 62
   hcut: 10.1667
   exceedbudget: 0
   conechange: 0
   npoints: 67
   errest: 1.0907e-18
   VarfpCI: [9.8449e-10 1.4901e-09]
```
Example 2 Integrate function $\exp(-x^2)$ on $[1,2]$ with lowest initial number of function values 100 and highest initial number of function values 10000, absolute error tolerance 10^{-5} and cost budget 10000000.

$$f = @\(x\) \exp(-x.^2);$$

$$[q, \text{out}_\text{param}] = \text{integral}_\g(f,'a',1,'b',2,'nlo',100,' nhi',10000,'\text{abstol}',1e-5,'\text{nmax}',1e7)$$

$$q = 0.1353$$

$$\text{out}_\text{param} =$$

$$\begin{align*}
 f & : @(x)\exp(-x.^2) \\
 a & : 1 \\
 b & : 2 \\
 \text{abstol} & : 1.0000e-05 \\
 \text{nlo} & : 100 \\
 \text{nhi} & : 10000 \\
 \text{nmax} & : 10000000 \\
 \text{ninit} & : 602 \\
 \text{hcut} & : 100.1667 \\
 \text{exceedbudget} & : 0 \\
 \text{conechange} & : 0 \\
 \text{npoints} & : 607 \\
 \text{errest} & : 4.3845e-13 \\
 \text{VarfpCI} & : [2.8380 4.2574]
\end{align*}$$

5.5 See Also

integral, quad, funappx_g, funmin_g, meanMC_g, cubMC_g, cubLattice_g, cubSobol_g, cubBayesLattice_g
6 meanMC_g

Monte Carlo method to estimate the mean of a random variable.

6.1 Syntax

```matlab
tmu = meanMC_g(Yrand)
```

```matlab
tmu = meanMC_g(Yrand,abstol,reltol,alpha,fudge,nSig,n1,tbudget,nbudget)
```

```matlab
tmu = meanMC_g(Yrand,'abstol',abstol,'reltol',reltol,'alpha',alpha,
                'fudge',fudge,'nSig',nSig,'n1',n1,'tbudget',tbudget,'nbudget',nbudget)
```

```matlab
[tmu, out_param] = meanMC_g(Yrand,in_param)
```

6.2 Description

`tmu = meanMC_g(Yrand)` estimates the mean, μ, of a random variable Y to within a specified generalized error tolerance $tolfun := \max(abstol,reltol*|\mu|)$, i.e., $\mu - tmu <= tolfun$ with probability at least $(1 - alpha)$, where $abstol$ is the absolute error tolerance, and $reltol$ is the relative error tolerance. Usually the $reltol$ determines the accuracy of the estimation, however, if μ is rather small, then $abstol$ determines the accuracy of the estimation. Input $Yrand$ is a function handle that accepts a positive integer input n and returns an $n \times 1$ vector of IID instances of the random variable Y.

`tmu = meanMC_g(Yrand,abstol,reltol,alpha)` estimates the mean of a random variable Y to within a specified generalized error tolerance $tolfun$ with guaranteed confidence level $1-alpha$ using all ordered parsing inputs $abstol$, $reltol$, $alpha$, $fudge$, $nSig$, $n1$, $tbudget$, $nbudget$.

`tmu = meanMC_g(Yrand,'abstol',abstol,'reltol',reltol,'alpha',alpha)` estimates the mean of a random variable Y to within a specified generalized error tolerance $tolfun$ with guaranteed confidence level $1-alpha$. All the field-value pairs are optional and can be supplied in different order, if a field is not supplied, the default value is used.

`[tmu, out_param] = meanMC_g(Yrand,in_param)` estimates the mean of a random variable Y to within a specified generalized error tolerance $tolfun$ with the given parameters `in_param` and produce the estimated mean tmu and output parameters `out_param`. If a field is not specified, the default value is used.

Input Arguments

- `Yrand` — the function for generating n IID instances of a random variable Y whose mean we want to estimate. Y is often defined as a function of some random variable X with a simple distribution. The input of $Yrand$ should be the number of random variables n, the output of $Yrand$ should be n function values. For example, if $Y = X.^2$ where X is a standard uniform random variable, then one may define $Yrand = @(n) \text{rand}(n,1).^2$.

- `in_param.abstol` — the absolute error tolerance, which should be positive, default value is $1e-2$.

- `in_param.reltol` — the relative error tolerance, which should be between 0 and 1, default value is $1e-1$.

- `in_param.alpha` — the uncertainty, which should be a small positive percentage, default value is 1%.

- `in_param.fudge` — standard deviation inflation factor, which should be larger than 1, default value is 1.2.

- `in_param.nSig` — initial sample size for estimating the sample variance, which should be a moderately large integer bigger than or equal to 30, the default value is $1e4$.

• \text{\texttt{in}_{param.n1}} — initial sample size for estimating the sample mean, which should be a moderately large positive integer at least 30, the default value is 1e4.

• \text{\texttt{in}_{param.tbudget}} — the time budget in seconds to do the two-stage estimation, which should be positive, the default value is 100 seconds.

• \text{\texttt{in}_{param.nbudget}} — the sample budget to do the two-stage estimation, which should be a large positive integer, the default value is 1e9.

\textbf{Output Arguments}

• \text{\texttt{tmu}} — the estimated mean of \(Y\).

• \text{\texttt{out}_{param.tau}} — the iteration step.

• \text{\texttt{out}_{param.n}} — the sample size used in each iteration.

• \text{\texttt{out}_{param.nremain}} — the remaining sample budget to estimate \(\mu\). It was calculated by the sample left and time left.

• \text{\texttt{out}_{param.ntot}} — total sample used.

• \text{\texttt{out}_{param.lmu}} — estimated mean in each iteration.

• \text{\texttt{out}_{param.tol}} — the reliable upper bound on error for each iteration.

• \text{\texttt{out}_{param.var}} — the sample variance.

• \text{\texttt{out}_{param.exitflag}} — the state of program when exiting:
 0 Successs
 1 Not enough samples to estimate the mean

• \text{\texttt{out}_{param.kurtmax}} — the upper bound on modified kurtosis.

• \text{\texttt{out}_{param.time}} — the time elapsed in seconds.

\textbf{6.3 Guarantee}

This algorithm attempts to calculate the mean, \(\mu\), of a random variable to a prescribed error tolerance, \(\text{tolfun} = \max(\text{abstol}, \text{reitol} | \mu|)\), with guaranteed confidence level \((1 - \text{alpha})\). If the algorithm terminates without showing any warning messages and provides an answer \(\text{tmu}\), then the follow inequality would be satisfied:

\[
\Pr(\frac{| \mu - \text{tmu} |}{\text{tolfun}} <= \text{tolfun}) >= 1-\text{alpha}.
\]

The cost of the algorithm, \(N_{\text{tot}}\), is also bounded above by \(N_{\text{up}}\), which is defined in terms of \text{abstol}, \text{reitol}, \text{nSig}, \text{n1}, \text{fudge}, \text{kurtmax}, \text{beta}. And the following inequality holds:

\[
\Pr(N_{\text{tot}} <= N_{\text{up}}) >= 1-\text{beta}.
\]

Please refer to our paper for detailed arguments and proofs.
6.4 Examples

Example 1 Calculate the mean of x^2 when x is uniformly distributed in $[0,1]$, with the absolute error tolerance $= 10^{-3}$ and uncertainty 5%.

```matlab
in_param.reltol = 0; in_param.abstol = 1e-3;
in_param.alpha = 0.05; Yrand = @(n) rand(n,1).^2;
tmu = meanMC_g(Yrand,in_param); exactsol = 1/3;
check = double(abs(exactsol-tmu) < 1e-3)
```

check =
1

Example 2 Calculate the mean of $\exp(x)$ when x is uniformly distributed in $[0,1]$, with the absolute error tolerance 10^{-3}.

```matlab
tmu = meanMC_g(@(n)exp(rand(n,1)),1e-3,0); exactsol = exp(1)-1;
check = double(abs(exactsol-tmu) < 1e-3)
```

check =
1

Example 3 Calculate the mean of $\cos(x)$ when x is uniformly distributed in $[0,1]$, with the relative error tolerance 10^{-2} and uncertainty 0.05.

```matlab
tmu = meanMC_g(@(n)cos(rand(n,1)),'reltol',1e-3,'abstol',1e-4,'alpha',0.01);
exactsol = sin(1);
check = double(abs(exactsol-tmu) < max(1e-3,1e-2*abs(exactsol)))
```

check =
1

6.5 See Also

funappx_g, integral_g, cubMC_g, cubSobol_g, cubLattice_g, cubBayesLattice_g
7 meanMC_CLT

Monte Carlo method to estimate the mean of a random variable

7.1 Syntax

\[\text{sol} = \text{MEANMC_CLT}(Y, \text{absTol}, \text{relTol}, \alpha, n\text{Sig}, \text{inflate}) \]

7.2 Description

\[\text{sol} = \text{MEANMC_CLT}(Y, \text{absTol}, \text{relTol}, \alpha, n\text{Sig}, \text{inflate}) \]

estimates the mean, \(\mu \), of a random variable to within a specified error tolerance, i.e., \(|\mu - t\mu| \leq \max(\text{absTol}, \text{relTol} |\mu|) \) with probability at least \(1 - \alpha \), where \(\text{absTol} \) is the absolute error tolerance. The default values are \(\text{absTol} = 1e-2 \) and \(\alpha = 1\% \). Input \(Y \) is a function handle that accepts a positive integer input \(n \) and returns an \(n \times 1 \) vector of IID instances of the random variable.

This is a heuristic algorithm based on a Central Limit Theorem approximation.

Input Arguments

- \(Y \) — the function or structure for generating \(n \) IID instances of a random variable \(Y \) whose mean we want to estimate. \(Y \) is often defined as a function of some random variable \(X \) with a simple distribution. The input of \(Y \) should be the number of random variables \(n \), the output of \(Y \) should be \(n \) function values. For example, if \(Y = X^2 \) where \(X \) is a standard uniform random variable, then one may define \(Y \) as \(\lambda \) = rand\((n,1) \)\(^2 \).
- \(\text{absTol} \) — the absolute error tolerance, which should be non-negative — default = \(1e-2 \)
- \(\text{relTol} \) — the relative error tolerance, which should be non-negative and no greater than 1 — default = \(0 \)
- \(\alpha \) — the uncertainty, which should be a small positive percentage — default = \(1\% \)
- \(n\text{Sig} \) — the number of samples used to compute the sample variance — default = \(1000 \)
- \(\text{inflate} \) — the standard deviation inflation factor — default = \(1.2 \)

Output Arguments

- \(Y \) — the random generator
- \(\text{absTol} \) — the absolute error tolerance
- \(\text{relTol} \) — the relative error tolerance
- \(\alpha \) — the uncertainty
- \(\mu \) — the estimated mean of \(Y \).
- \(\text{stddev} \) — sample standard deviation of the random variable
- \(n\text{Sample} \) — total sample used.
- \(\text{time} \) — the time elapsed in seconds.
- \(\text{errBd} \) — the error bound.
7.3 Examples

Example 1 Estimate the integral with integrand \(f(x) = x_1 x_2 \) in the interval \([0, 1]^2\) with absolute tolerance \(10^{-3}\) and relative tolerance 0:

```matlab
[mu, out] = meanMC_CLT(@(n) prod(rand(n,2),2), 0.001);
exact = 1/4;
check = double(abs(exact - mu) < 2e-3)
```

check = 1

Example 2 Estimate the integral \(f(x) = \exp(-x^2) \) in the interval \([0, 1]\) using \(x \) as a control variate and relative error \(10^{-3}\):

```matlab
f = @(x)[exp(-x.^2), x];
YXn = @(n)f(rand(n,1));
s = struct('Y',YXn,'nY',1,'trueMuCV',1/2);
exact = erf(1)*sqrt(pi)/2;
success = 0; runs = 1000; tol = 1e-3;
for i=1:runs, success = success + double(abs(exact-meanMC_CLT(s,0,tol)) < tol*exact); end
check = success >= 0.99 * runs
```

check = 1

Example 3 Estimate the Keister’s integration in dimension 1 with \(a = 1, \frac{1}{\sqrt{2}} \) and using \(\cos(x) \) as a control variate:

```matlab
normsqd = @(x) sum(x.*x,2);
f = @(normt,a,d) ((2*pi*a^2).^(d/2)) * cos(a*sqrt(normt)).* exp((1/2-a^2)*normt);
f1 = @(x,a,d) f(normsqd(x),a,d);
f2 = @(x)[f1(x,1,1),f1(x,1/sqrt(2),1),cos(x)];
YXn = @(n)f2(randn(n,1));
s = struct('Y',YXn,'nY',2,'trueMuCV',1/sqrt(exp(1)));
[hmu, out] = meanMC_CLT(s,0,1e-3);
exact = 1.380388447043143;
check = double(abs(exact-hmu) < max(0,1e-3*abs(exact)))
```

check = 1

Example 4 Estimate the integral with integrand \(f(x) = x_1^3 x_2^3 x_3^3 \) in the interval \([0, 1]^3\) with pure absolute error \(10^{-3}\) using \(x_1 x_2 x_3 \) as a control variate:

```matlab
f = @(x) [x(:,1).^3.*x(:,2).^3.*x(:,3).^3, x(:,1).*x(:,2).*x(:,3)];
s = struct('Y',0(n)f(rand(n,3)),'nY',1,'trueMuCV',1/8);
[hmu, out] = meanMC_CLT(s,1e-3,0);
exact = 1/64;
check = double(abs(exact-hmu) < max(1e-3,1e-3*abs(exact)))
```

check = 1

Example 5 Estimate the integrals with integrands \(f_1(x) = x_1^3 x_2^3 x_3^3 \) and \(f_2(x) = x_1^2 x_2^2 x_3^2 - \frac{1}{27} + \frac{1}{64} \) in the interval \([0, 1]^3\) using \(x_1 x_2 x_3 \) and \(x_1 + x_2 + x_3 \) as control variates:
\[f = @(x) [x(:,1).^3.*x(:,2).^3.*x(:,3).^3, ... \\
 x(:,1).^2.*x(:,2).^2.*x(:,3).^2-1/27+1/64, ... \\
 x(:,1).*x(:,2).*x(:,3), ... \\
 x(:,1)+x(:,2)+x(:,3)]; \\
\]
\[
 s = struct('Y',@(n)f(rand(n,3)),'nY',2,'trueMuCV',[1/8 1.5]); \\
 [hmu,out] = meanMC_CLT(s,1e-4,1e-3); \\
 exact = 1/64; \\
 check = double(abs(exact-hmu) < max(1e-4,1e-3*abs(exact)))
\]

check =

1

7.4 See Also
funappx_g, integral_g, cubMC_g, meanMC_g, cubLattice_g, cubSobol_g, cubBayesLattice_g
8 cubMC.g

Monte Carlo method to evaluate a multidimensional integral

8.1 Syntax

\[[Q,\text{out}_\text{param}] = \text{cubMC.g}(f,\text{hyperbox}) \]
\[Q = \text{cubMC.g}(f,\text{hyperbox,measure,abstol,reltol,\alpha}) \]
\[Q = \text{cubMC.g}(f,\text{hyperbox,'measure',measure,'abstol',abstol,'reltol',reltol,'\alpha',\alpha}) \]
\[[Q,\text{out}_\text{param}] = \text{cubMC.g}(f,\text{hyperbox,\text{in}_\text{param}}) \]

8.2 Description

\[[Q,\text{out}_\text{param}] = \text{cubMC.g}(f,\text{hyperbox}) \] estimates the integral of \(f \) over \(\text{hyperbox} \) to within a specified generalized error tolerance, \(\text{tolfun} = \max(\text{abstol, reltol} \cdot |I|) \), i.e., \(|I - Q| \leq \text{tolfun} \) with probability at least \((1 - \alpha)\), where \(\text{abstol} \) is the absolute error tolerance, and \(\text{reltol} \) is the relative error tolerance. Usually the \(\text{reltol} \) determines the accuracy of the estimation, however, if \(|I| \) is rather small, then \(\text{abstol} \) determines the accuracy of the estimation. Input \(f \) is a function handle that accepts an \(n \times d \) matrix input, where \(d \) is the dimension of the hyperbox, and \(n \) is the number of points being evaluated simultaneously.

When \(\text{measure} \) is 'uniform', 'uniform box', 'normal' or 'Gaussian', the input hyperbox is a \(2 \times d \) matrix, where the first row corresponds to the lower limits and the second row corresponds to the upper limits. When \(\text{measure} \) is 'uniform ball' or 'uniform sphere', the input hyperbox is a vector with \(d+1 \) elements, where the first \(d \) values correspond to the center of the ball and the last value corresponds to the radius of the ball. For these last two measures, a user can optionally specify what transformation should be used in order to get a uniform distribution on a ball of sphere. When \(\text{measure} \) is 'uniform ball_box', the box-to-ball transformation, which gets a set of points uniformly distributed on a ball from a set of points uniformly distributed on a box, will be used. When \(\text{measure} \) is 'uniform ball_normal', the normal-to-ball transformation, which gets a set of points uniformly distributed on a ball from a set of points normally distributed on the space, will be used. Similarly, the measures 'uniform sphere_box' and 'uniform sphere_normal' can be defined. The default transformations are the box-to-ball and the box-to-sphere transformations, depending on the region of integration.

\[Q = \text{cubMC.g}(f,\text{hyperbox,measure,abstol,reltol,\alpha}) \] estimates the integral of function \(f \) over \(\text{hyperbox} \) to within a specified generalized error tolerance \(\text{tolfun} \) with guaranteed confidence level \(1 - \alpha \) using all ordered parsing inputs \(f, \text{hyperbox, measure, abstol, reltol, alpha, fudge, nSig, n1, tbudget, nbudget, flag} \). The input \(f \) and \(\text{hyperbox} \) are required and others are optional.

\[Q = \text{cubMC.g}(f,\text{hyperbox,'measure',measure,'abstol',abstol,'reltol',reltol,'\alpha',\alpha}) \] estimates the integral of \(f \) over \(\text{hyperbox} \) to within a specified generalized error tolerance \(\text{tolfun} \) with guaranteed confidence level \(1 - \alpha \). All the field-value pairs are optional and can be supplied in different order. If an input is not specified, the default value is used.

\[[Q,\text{out}_\text{param}] = \text{cubMC.g}(f,\text{hyperbox,\text{in}_\text{param}}) \] estimates the integral of \(f \) over \(\text{hyperbox} \) to within a specified generalized error tolerance \(\text{tolfun} \) with the given parameters \(\text{in}_\text{param} \) and produce output parameters \(\text{out}_\text{param} \) and the integral \(Q \).

Input Arguments

- \(f \) — the integrand.
- \(\text{hyperbox} \) — the integration hyperbox. The default value is \([\text{zeros}(1,d); \text{ones}(1,d)]\), the default \(d \) is 1.
• in_param.measure — the measure for generating the random variable, the default is 'uniform'. The other measures could be handled are 'uniform box', 'normal'/'Gaussian', 'uniform ball'/'uniform ball box'/uniform ball normal' and 'uniform sphere'/uniform sphere box'/uniform sphere normal'. The input should be a string type, hence with quotes.

• in_param.abstol — the absolute error tolerance, the default value is 1e-2.

• in_param.reltol — the relative error tolerance, the default value is 1e-1.

• in_param.alpha — the uncertainty, the default value is 1%.

Optional Input Arguments

• in_param.fudge — the standard deviation inflation factor, the default value is 1.2.

• in_param.nSig — initial sample size for estimating the sample variance, which should be a moderately large integer at least 30, the default value is 1e4.

• in_param.n1 — initial sample size for estimating the sample mean, which should be a moderately large positive integer at least 30, the default value is 1e4.

• in_param.tbudget — the time budget to do the estimation, the default value is 100 seconds.

• in_param.nbudget — the sample budget to do the estimation, the default value is 1e9.

• in_param.flag — the value corresponds to parameter checking status:
 0 not checked
 1 checked by meanMC_g
 2 checked by cubMC_g

Output Arguments

• Q — the estimated value of the integral.

• out_param.n — the sample size used in each iteration.

• out_param.ntot — total sample used, including the sample used to convert time budget to sample budget and the sample in each iteration step.

• out_param.nremain — the remaining sample budget to estimate I. It was calculated by the sample left and time left.

• out_param.tau — the iteration step.

• out_param.lmu — estimated integral in each iteration.

• out_param.tol — the reliable upper bound on error for each iteration.

• out_param.kurtmax — the upper bound on modified kurtosis.

• out_param.time — the time elapsed in seconds.

• out_param.var — the sample variance.
8.3 Guarantee

This algorithm attempts to calculate the integral of function f over a hyperbox to a prescribed error tolerance $\text{tolfun} = \max(abstol, \text{rejtol} \cdot |I|)$ with guaranteed confidence level $1-\alpha$. If the algorithm terminates without showing any warning messages and provides an answer Q, then the following inequality would be satisfied:

$$\Pr(|Q - I| \leq \text{tolfun}) \geq 1-\alpha.$$

The cost of the algorithm, N_{tot}, is also bounded above by N_{up}, which is a function in terms of abstol, rejtol, nSig, $n1$, fudge, kurtmax, beta. And the following inequality holds:

$$\Pr(N_{\text{tot}} \leq N_{\text{up}}) \geq 1-\beta.$$

Please refer to our paper for detailed arguments and proofs.

8.4 Examples

Example 1 Estimate the integral with integrand $f(x) = \sin(x)$ over the interval $[1, 2]$ with default parameters.

```matlab
f = @(x) sin(x); interval = [1;2];
Q = cubMC_g(f,interval,'uniform',1e-3,1e-2);
exactsol = 0.9564;
check = double(abs(exactsol-Q) < max(1e-3,1e-2*abs(exactsol)))
```

check =

1

Example 2 Estimate the integral with integrand $f(x) = \exp(-x_1^2 - x_2^2)$ over the hyperbox $[0, 0; 1, 1]$, where $x = [x_1, x_2]$ is a vector.

```matlab
f = @(x) exp(-x(:,1).^2-x(:,2).^2); hyperbox = [0 0;1 1];
Q = cubMC_g(f,hyperbox,'uniform',1e-3,0);
exactsol = 0.5577;
check = double(abs(exactsol-Q) < 1e-3)
```

check =

1

Example 3 Estimate the integral with integrand $f(x) = 2^d \prod_{i=1}^{d} x_i + 0.555$ over the hyperbox $[0, 1]^d$, where $x = [x_1, x_2, \ldots, x_d]$ is a vector.

```matlab
d = 3; f = @(x) 2*d*prod(x,2)+0.555; hyperbox = [zeros(1,d); ones(1,d)];
in_param.abstol = 1e-3;in_param.reltol=1e-3;
Q = cubMC_g(f,hyperbox,in_param);
exactsol = 1.555;
check = double(abs(exactsol-Q) < max(1e-3,1e-3*abs(exactsol)))
```

check =

1

Example 4 Estimate the integral with integrand $f(x) = \exp(-x_1^2 - x_2^2)$ in R^2, where $x = [x_1, x_2]$ is a vector.

```matlab
f = @(x) exp(-x(:,1).^2-x(:,2).^2); hyperbox = [-inf -inf;inf inf];
Q = cubMC_g(f,hyperbox,'normal',0,1e-2);
exactsol = 1/3;
check = double(abs(exactsol-Q) < max(0,1e-2*abs(exactsol)))
```
Example 5 Estimate the integral with integrand \(f(x) = x_1^2 + x_2^2 \) in the disk with center \((0, 0)\) and radius 1, where \(x = [x_1, x_2] \) is a vector.

```matlab
f = @(x) x(:,1).^2+x(:,2).^2; hyperbox = [0,0,1];
Q = cubMC_g(f,hyperbox,'uniform ball','abstol',1e-3,'reltol',1e-3);
exactsol = pi/2;
check = double(abs(exactsol-Q) < max(1e-3,1e-3*abs(exactsol)))
```

check = 1

8.5 See Also

funappx.g, integral.g, meanMC.g, cubLattice.g, cubSobol.g, cubBayesLattice.g
9 cubLattice_g

Quasi-Monte Carlo method using rank-1 Lattices cubature over a d-dimensional region to integrate within a specified generalized error tolerance with guarantees under Fourier coefficients cone decay assumptions.

9.1 Syntax

[q,out_param] = cubLattice_g(f,hyperbox)

q = cubLattice_g(f,hyperbox,measure,abstol,reltol)

q = cubLattice_g(f,hyperbox,’measure’,measure,’abstol’,abstol,’reltol’,reltol)

q = cubLattice_g(f,hyperbox,in_param)

9.2 Description

[q,out_param] = cubLattice_g(f,hyperbox) estimates the integral of f over the d-dimensional region described by hyperbox, and with an error guaranteed not to be greater than a specific generalized error tolerance, tolfun:=max(abstol,reltol*|integral(f)|). Input f is a function handle. f should accept an n x d matrix input, where d is the dimension and n is the number of points being evaluated simultaneously.

When measure is 'uniform', the input hyperbox is a 2 x d matrix, where the first row corresponds to the lower limits and the second row corresponds to the upper limits of the integral. When measure is 'uniform ball' or 'uniform sphere', the input hyperbox is a vector with d+1 elements, where the first d values correspond to the center of the ball and the last value corresponds to the radius of the ball. For these last two measures, a user can optionally specify what transformation should be used in order to get a uniform distribution on a ball. When measure is 'uniform ball_box', the box-to-ball transformation, which gets a set of points uniformly distributed on a ball from a set of points uniformly distributed on a box, will be used. When measure is 'uniform ball_normal', the normal-to-ball transformation, which gets a set of points uniformly distributed on a ball from a set of points normally distributed on the space, will be used. Similarly, the measures 'uniform sphere_box' and 'uniform sphere_normal' can be used to specify the desired transformations. The default transformations are the box-to-ball and the box-to-sphere transformations, depending on the region of integration. Given the construction of our Lattices, d must be a positive integer with 1 <= d <= 600.

q = cubLattice_g(f,hyperbox,measure,abstol,reltol) estimates the integral of f over the hyperbox. The answer is given within the generalized error tolerance tolfun. All parameters should be input in the order specified above. If an input is not specified, the default value is used. Note that if an input is not specified, the remaining tail cannot be specified either. Inputs f and hyperbox are required. The other optional inputs are in the correct order: measure,abstol,reltol,shift,mmin,mmax,fudge, and transform.

q = cubLattice_g(f,hyperbox,’measure’,measure,’abstol’,abstol,’reltol’,reltol) estimates the integral of f over the hyperbox. The answer is given within the generalized error tolerance tolfun. All the field-value pairs are optional and can be supplied in any order. If an input is not specified, the default value is used.

q = cubLattice_g(f,hyperbox,in_param) estimates the integral of f over the hyperbox. The answer is given within the generalized error tolerance tolfun.

Input Arguments

- f — the integrand whose input should be a matrix n x d where n is the number of data points and d the dimension, which cannot be greater than 600. By default f is f=@ x.^2.
- hyperbox — the integration region defined by its bounds. When measure is 'uniform' or 'normal', hyperbox must be a 2 x d matrix, where the first row corresponds to the lower limits and the second row corresponds to the upper limits of the integral. When measure is 'uniform ball' or 'uniform sphere',...
the input hyperbox is a vector with \(d+1 \) elements, where the first \(d \) values correspond to the center of the ball and the last value corresponds to the radius of the ball. The default value is \([0;1]\).

- \texttt{in_param.measure} — for \(f(x)\mu(dx) \), we can define \(\mu(dx) \) to be the measure of a uniformly distributed random variable in the hyperbox or normally distributed with covariance matrix \(I_d \). The possible values are 'uniform', 'normal', 'uniform ball', 'uniform ball_box', 'uniform ball_normal', 'uniform sphere', 'uniform sphere_box' and 'uniform sphere_normal'. For 'uniform', the hyperbox must be a finite volume, for 'normal', the hyperbox can only be defined as \((-\text{Inf},\text{Inf})^d\) and, for 'uniform ball' or 'uniform sphere', hyperbox must have finite values for the coordinates of the center and a finite positive value for the radius. By default it is 'uniform'.

- \texttt{in_param.abstol} — the absolute error tolerance, \(\text{abstol} \geq 0 \). By default it is \(1e-4 \). For pure absolute tolerance, set \texttt{in_param.reltol} = 0.

- \texttt{in_param.reltol} — the relative error tolerance, which should be in \([0,1]\). Default value is \(1e-2 \). For pure absolute tolerance, set \texttt{in_param.abstol} = 0.

Optional Input Arguments

- \texttt{in_param.shift} — the Rank-1 lattices can be shifted to avoid the origin or other particular points. The shift is a vector in \([0,1]^d\). By default we consider a shift uniformly sampled from \([0,1]^d\).

- \texttt{in_param.mmin} — the minimum number of points to start is \(2^{\text{mmin}} \). The cone condition on the Fourier coefficients decay requires a minimum number of points to start. The advice is to consider at least \(\text{mmin}=10 \). \text{mmin} needs to be a positive integer with \(\text{mmin} \leq \text{mmax} \). By default it is 10.

- \texttt{in_param.mmax} — the maximum budget is \(2^{\text{mmax}} \). By construction of our Lattices generator, \text{mmax} is a positive integer such that \(\text{mmin} \leq \text{mmax} \). \text{mmax} should not be bigger than the \texttt{gail.lattice_gen} allows. The default value is 20.

- \texttt{in_param.fudge} — the positive function multiplying the finite sum of Fast Fourier coefficients specified in the cone of functions. This input is a function handle. The fudge should accept an array of nonnegative integers being evaluated simultaneously. For more technical information about this parameter, refer to the references. By default it is \(@m \) \(5 \times 2^{-m} \).

- \texttt{in_param.transform} — the algorithm is defined for continuous periodic functions. If the input function \(f \) is not, there are 5 types of transform to periodize it without modifying the result. By default it is the Baker’s transform. The options are:
 - \texttt{id} : no transformation.
 - \texttt{Baker} : Baker’s transform or tent map in each coordinate. Preserving only continuity but simple to compute. Chosen by default.
 - \texttt{C0} : polynomial transformation only preserving continuity.
 - \texttt{C1} : polynomial transformation preserving the first derivative.
 - \texttt{C1sin} : Sidi’s transform with sine, preserving the first derivative. This is in general a better option than ‘C1’.

Output Arguments

- \(q \) — the estimated value of the integral.

- \texttt{out_param.d} — dimension over which the algorithm integrated.

- \texttt{out_param.n} — number of Rank-1 lattice points used for computing the integral of \(f \).

- \texttt{out_param.bound_err} — predicted bound on the error based on the cone condition. If the function lies in the cone, the real error will be smaller than generalized tolerance.
• `out.param.time` — time elapsed in seconds when calling `cubLattice_g`.

• `out.param.exitflag` — this is a binary vector stating whether warning flags arise. These flags tell about which conditions make the final result certainly not guaranteed. One flag is considered arisen when its value is 1. The following list explains the flags in the respective vector order:

1: If reached overbudget, meaning the max budget is attained without reaching the guaranteed error tolerance.

2: If the function lies outside the cone, results are not guaranteed to be accurate. Note that this parameter is computed on the transformed function, not the input function. For more information on the transforms, check the input parameter in `param.transform`; for information about the cone definition, check the article mentioned below.

9.3 Guarantee

This algorithm computes the integral of real valued functions in $[0,1]^d$ with a prescribed generalized error tolerance. The Fourier coefficients of the integrand are assumed to be absolutely convergent. If the algorithm terminates without warning messages, the output is given with guarantees under the assumption that the integrand lies inside a cone of functions. The guarantee is based on the decay rate of the Fourier coefficients. For integration over domains other than $[0,1]^d$, this cone condition applies to $f \circ \psi$ (the composition of the functions) where ψ is the transformation function for $[0,1]^d$ to the desired region. For more details on how the cone is defined, please refer to the references [26].

9.4 Examples

Example 1

Estimate the integral with integrand $f(x) = x_1 x_2$ in the interval $[0,1]^2$:

```matlab
f = @(x) prod(x,2); hyperbox = [zeros(1,2);ones(1,2)];
q = cubLattice_g(f,hyperbox,'uniform',1e-5,0,'transform','C1sin');
exactsol = 1/4;
check = double(abs(exactsol-q) < 1e-5)
```

check =
1

Example 2

Estimate the integral with integrand $f(x) = x_1^2 x_2^2 x_3^2$ in the interval R^3 where x_1, x_2 and x_3 are normally distributed:

```matlab
f = @(x) x(:,1).^2.*x(:,2).^2.*x(:,3).^2; hyperbox = [-inf(1,3);inf(1,3)];
q = cubLattice_g(f,hyperbox,'normal',1e-3,1e-3,...
  'transform','C1sin','shift',2^(-25)*ones(1,3));
exactsol = 1;
check = double(abs(exactsol-q) < max(1e-3,1e-3*abs(exactsol)))
```

check =
1

Example 3

Estimate the integral with integrand $f(x) = \exp(-x_1^2 - x_2^2)$ in the interval $[-1,2]^2$:

```matlab
f = @(x) exp(-x(:,1).^2-x(:,2).^2); hyperbox = [-ones(1,2);2*ones(1,2)];
q = cubLattice_g(f,hyperbox,'uniform',1e-3,1e-2,'transform','C1');
exactsol = 1/9*(sqrt(pi)/2*(erf(2)+erf(1)))^2;
check = double(abs(exactsol-q) < max(1e-3,1e-2*abs(exactsol)))
```

check =
1
Example 4 Estimate the price of an European call with $S_0 = 100$, $K = 100$, $r = \sigma^2/2$, $\sigma = 0.05$, and $T = 1$.

\[
f = @(x) \exp(-0.05^2/2)\times\max(100\times\exp(0.05\times x)-100,0);
\]

\[
\text{hyperbox} = [-\inf(1,1);\inf(1,1)];
\]

\[
q = \text{cubLattice}_g(f,\text{hyperbox},'normal',1e-4,1e-2,'transform','C1sin');
\]

\[
\text{price} = \text{normcdf}(0.05)\times100 - 0.5\times100\times\exp(-0.05^2/2);
\]

\[
\text{check} = \text{double}(\text{abs}(\text{price}-q) < \text{max}(1e-4,1e-2\times\text{abs}(\text{price})))
\]

\[
\text{check} = 1
\]

Example 5 Estimate the integral with integrand $f(x) = 8x_1x_2x_3x_4x_5$ in the interval $[0,1]^5$ with pure absolute error 10^{-5}.

\[
f = @(x) 8\times\text{prod}(x,2);
\]

\[
\text{hyperbox} = [\text{zeros}(1,5);\text{ones}(1,5)];
\]

\[
q = \text{cubLattice}_g(f,\text{hyperbox},'uniform',1e-5,0);
\]

\[
\text{exactsol} = 1/4;
\]

\[
\text{check} = \text{double}(\text{abs}(\text{exactsol}-q) < 1e-5)
\]

\[
\text{check} = 1
\]

Example 6 Estimate the integral with integrand $f(x) = 3/(5 - 4(\cos(2\pi x)))$ in the interval $[0,1]$ with pure absolute error 10^{-5}.

\[
f = @(x) 3./(5-4*(\cos(2*\pi*x)));
\]

\[
\text{hyperbox} = [0;1];
\]

\[
q = \text{cubLattice}_g(f,\text{hyperbox},'uniform',1e-5,0,'transform','id');
\]

\[
\text{exactsol} = 1;
\]

\[
\text{check} = \text{double}(\text{abs}(\text{exactsol}-q) < 1e-5)
\]

\[
\text{check} = 1
\]

Example 7 Estimate the integral with integrand $f(x) = x_1^2 + x_2^2$ over the disk with center $(0,0)$ and radius 1 with pure absolute error 10^{-4}, where $x = [x_1,x_2]$ is a vector.

\[
f = @(x) x(:,1).^2+x(:,2).^2;
\]

\[
\text{hyperbox} = [0,0,1];
\]

\[
q = \text{cubLattice}_g(f,\text{hyperbox},'uniform ball','abstol',1e-4,'reltol',0);
\]

\[
\text{exactsol} = \pi/2;
\]

\[
\text{check} = \text{double}(\text{abs}(\text{exactsol}-q) < 1e-4)
\]

\[
\text{check} = 1
\]

9.5 See Also

cubSobol_g, cubMC_g, cubBayesLattice_g, meanMC_g, meanMC_CLT, integral_g

28
10 cubSobol_g

Quasi-Monte Carlo method using Sobol’ cubature over the d-dimensional region to integrate within a specified
generalized error tolerance with guarantees under Walsh-Fourier coefficients cone decay assumptions

10.1 Syntax

[q,out_param] = cubSobol_g(f,hyperbox)
q = cubSobol_g(f,hyperbox,measure,abstol,reltol)
q = cubSobol_g(f,hyperbox,’measure’,measure,’abstol’,abstol,’reltol’,reltol)
q = cubSobol_g(f,hyperbox,in_param)

10.2 Description

[q,out_param] = cubSobol_g(f,hyperbox) estimates the integral of f over the d-dimensional region described
by hyperbox, and with an error guaranteed not to be greater than a specific generalized error tolerance,
tolfun:=max(abstol,reltol*| integral(f) |). Input f is a function handle. f should accept an n x d matrix
input, where d is the dimension and n is the number of points being evaluated simultaneously.

When measure is ‘uniform’, the input hyperbox is a 2 x d matrix, where the first row corresponds to the lower
limits and the second row corresponds to the upper limits of the integral. When measure is ‘uniform ball’ or
’uniform sphere’, the input hyperbox is a vector with d+1 elements, where the first d values correspond to
the center of the ball and the last value corresponds to the radius of the ball. For these last two measures, a user
can optionally specify what transformation should be used in order to get a uniform distribution on a ball.
When measure is ‘uniform ball_box’, the box-to-ball transformation, which gets a set of points uniformly
distributed on a ball from a set of points uniformly distributed on a box, will be used. When measure is
’uniform ball_normal’, the normal-to-ball transformation, which gets a set of points uniformly distributed
on a ball from a set of points normally distributed on the space, will be used. Similarly, the measures
’uniform sphere_box’ and ‘uniform sphere_normal’ can be used to specify the desired transformations. The
default transformations are the box-to-ball and the box-to-sphere transformations, depending on the region
of integration. Given the construction of Sobol’ sequences, d must be a positive integer with 1 <= d <=
1111.

q = cubSobol_g(f,hyperbox,measure,abstol,reltol) estimates the integral of f over the hyperbox. The answer
is given within the generalized error tolerance tolfun. All parameters should be input in the order specified
above. If an input is not specified, the default value is used. Note that if an input is not specified, the
remaining tail cannot be specified either. Inputs f and hyperbox are required. The other optional inputs are
in the correct order: measure,abstol,reltol,mmin,mmax,and fudge.

q = cubSobol_g(f,hyperbox,’measure’,measure,’abstol’,abstol,’reltol’,reltol) estimates the integral of f over
the hyperbox. The answer is given within the generalized error tolerance tolfun. All the field-value pairs are
optional and can be supplied in any order. If an input is not specified, the default value is used.

q = cubSobol_g(f,hyperbox,in_param) estimates the integral of f over the hyperbox. The answer is given
within the generalized error tolerance tolfun.

Input Arguments

• f — the integrand whose input should be a matrix n x d where n is the number of data points and d
 the dimension, which cannot be greater than 1111. By default f(x) = x^2.
 — if using control variates, f needs to be a structure with two fields: First field: ‘func’, need to be
 a function handle with n x (J+1) dimension outputs, where J is the number of control variates.
First column is the output of target function, next J columns are the outputs of control variates.

Second field: 'cv', need to be a 1 x J vector that stores the exact means of control variates in the same order from the function handle. For examples of how to use control variates, please check Example 7 below.

- hyperbox — the integration region defined by its bounds. When measure is 'uniform' or 'normal', hyperbox must be a 2 x d matrix, where the first row corresponds to the lower limits and the second row corresponds to the upper limits of the integral. When measure is 'uniform ball' or 'uniform sphere', the input hyperbox is a vector with d+1 elements, where the first d values correspond to the center of the ball and the last value corresponds to the radius of the ball. The default value is [0;1].

- in_param.measure — for f(x)*mu(dx), we can define mu(dx) to be the measure of a uniformly distributed random variable in the hyperbox or normally distributed with covariance matrix I_d. The possible values are 'uniform', 'normal', 'uniform ball', 'uniform ball_box', 'uniform ball_normal', 'uniform sphere', 'uniform sphere_box' and 'uniform sphere_normal'. For 'uniform', the hyperbox must be a finite volume, for 'normal', the hyperbox can only be defined as (-Inf,Inf)^d and, for 'uniform ball' or 'uniform sphere', hyperbox must have finite values for the coordinates of the center and a finite positive value for the radius. By default it is 'uniform'.

- in_param.abstol — the absolute error tolerance, abstol>=0. By default it is 1e-4. For pure absolute tolerance, set in_param.reltol = 0.

- in_param.reltol — the relative error tolerance, which should be in [0,1]. Default value is 1e-2. For pure absolute tolerance, set in_param.abstol = 0.

Optional Input Arguments

- in_param.mmin — the minimum number of points to start is 2^mmin. The cone condition on the Fourier coefficients decay requires a minimum number of points to start. The advice is to consider at least mmin=10. mmin needs to be a positive integer with mmin<=mmax. By default it is 10.

- in_param.mmax — the maximum budget is 2^mmax. By construction of the Sobol' generator, mmax is a positive integer such that mmin<=mmax<=53. The default value is 24.

- in_param.fudge — the positive function multiplying the finite sum of Fast Walsh Fourier coefficients specified in the cone of functions. This input is a function handle. The fudge should accept an array of nonnegative integers being evaluated simultaneously. For more technical information about this parameter, refer to the references. By default it is @(m) 5*2.^(-m).

Output Arguments

- q — the estimated value of the integral.

- out_param.d — dimension over which the algorithm integrated.

- out_param.n — number of Sobol' points used for computing the integral of f.

- out_param.bound_err — predicted bound on the error based on the cone condition. If the function lies in the cone, the real error will be smaller than generalized tolerance.

- out_param.time — time elapsed in seconds when calling cubSobolg.

- out_param.beta — the value of beta when using control variates as in f-(1-Ih)beta, if using 'betaUpdate' option, beta is a vector storing value of each iteration.

- y — fast transform coefficients of the input function.

- kappanumap — wavenumber mapping used in the error bound.
• out.param.exitflag — this is a binary vector stating whether warning flags arise. These flags tell about which conditions make the final result certainly not guaranteed. One flag is considered arisen when its value is 1. The following list explains the flags in the respective vector order:

1 : If reaching overbudget. It states whether the max budget is attained without reaching the guaranteed error tolerance.
2 : If the function lies outside the cone. In this case, results are not guaranteed. For more information about the cone definition, check the article mentioned below.

10.3 Guarantee

This algorithm computes the integral of real valued functions in \([0,1]^d\) with a prescribed generalized error tolerance. The Walsh-Fourier coefficients of the integrand are assumed to be absolutely convergent. If the algorithm terminates without warning messages, the output is given with guarantees under the assumption that the integrand lies inside a cone of functions. The guarantee is based on the decay rate of the Walsh-Fourier coefficients. For integration over domains other than \([0,1]^d\), this cone condition applies to \(f \circ \psi\) (the composition of the functions) where \(\psi\) is the transformation function for \([0,1]^d\) to the desired region. For more details on how the cone is defined, please refer to the references below.

10.4 Examples

Example 1 Estimate the integral with integrand \(f(x) = x_1 x_2\) in the hyperbox \([0,1]^2\):

\[
f = @(x) prod(x,2); hyperbox = [zeros(1,2); ones(1,2)]; q = cubSobol_g(f,hyperbox,'uniform',1e-5,0); exactsol = 1/4; check = double(abs(exactsol-q) < 1e-5)
\]

check = 1

Example 2 Estimate the integral with integrand \(f(x) = x_1^2 x_2^2 x_3^2\) in the hyperbox \(R^3\) where \(x_1, x_2\) and \(x_3\) are normally distributed:

\[
f = @(x) x(:,1).^2.*x(:,2).^2.*x(:,3).^2; hyperbox = [-inf(1,3); inf(1,3)]; q = cubSobol_g(f,hyperbox,'normal',1e-3,1e-3); exactsol = 1; check = double(abs(exactsol-q) < max(1e-3,1e-3*abs(exactsol)))
\]

check = 1

Example 3 Estimate the integral with integrand \(f(x) = \exp(-x_1^2 - x_2^2)\) in the hyperbox \([-1,2]^2\):

\[
f = @(x) exp(-x(:,1).^2-x(:,2).^2); hyperbox = [-ones(1,2); 2*ones(1,2)]; q = cubSobol_g(f,hyperbox,'uniform',1e-3,1e-2); exactsol = 1/9*(sqrt(pi)/2*(erf(2)+erf(1)))^2; check = double(abs(exactsol-q) < max(1e-3,1e-2*abs(exactsol)))
\]

check = 1

Example 4 Estimate the price of an European call with \(S_0 = 100, K = 100, r = \sigma^2/2, \sigma = 0.05,\) and \(T = 1\).

\[
f = @(x) exp(-0.05^2/2)*max(100*exp(0.05*x)-100,0); hyperbox = [-inf(1,1); inf(1,1)]; q = cubSobol_g(f,hyperbox,'normal',1e-4,1e-2); price = normcdf(0.05)*100 - 0.5*100*exp(-0.05^2/2); check = double(abs(price-q) < max(1e-4,1e-2*abs(price)))
\]
Example 5 Estimate the integral with integrand \(f(x) = 8x_1x_2x_3x_4x_5 \) in the interval \([0,1)^5\) with pure absolute error \(10^{-5}\).

```matlab
f = @(x) 8*prod(x,2); hyperbox = [zeros(1,5);ones(1,5)];
q = cubSobol_g(f,hyperbox,'uniform',1e-5,0); exactsol = 1/4;
check = double(abs(exactsol-q) < 1e-5)
```

Example 6 Estimate the integral with integrand \(f(x) = x_1^2 + x_2^2 \) over the disk with center \((0,0)\) and radius 1 with pure absolute error \(10^{-5}\), where \(x = [x_1,x_2]\) is a vector.

```matlab
f = @(x) x(:,1).^2+x(:,2).^2; hyperbox = [0,0,1];
q = cubSobol_g(f,hyperbox,'uniform ball','abstol',1e-4,'reltol',0);
exactsol = pi/2;
check = double(abs(exactsol-q) < 1e-4)
```

Example 7 Estimate the integral with integrand \(f(x) = 10x_1 - 5x_2^2 + x_3^3 \) in the interval \([0,2)^3\) with pure absolute error \(10^{-6}\) using two control variates \(h_1(x) = x_1\) and \(h_2(x) = x_2^2\).

```matlab
g.func = @(x) [10*x(:,1)-5*x(:,2).^2+1*x(:,3).^3, x(:,1), x(:,2).^2];
g.cv = [1,4/3]; hyperbox= [zeros(1,3);2*ones(1,3)];
q = cubSobol_g(g,hyperbox,'uniform',1e-6,0); exactsol = 16/3;
check = double(abs(exactsol-q) < 1e-6)
```

10.5 See Also

cubLattice_g, cubBayesLattice_g, cubMC_g, meanMC_g, meanMC_CLT, integral_g
11 cubBayesLattice_g

Bayesian cubature method to estimate the integral of a random variable using rank-1 Lattices over a \(d\)-dimensional region within a specified generalized error tolerance with guarantees under Bayesian assumptions.

11.1 Syntax

\[
[OBJ,Q] = \text{cubBayesLattice}_g(f,\text{dim}',\text{absTol}',\text{absTol}',\text{relTol}',\text{relTol}',
\quad \text{order}',\text{order}',\text{ptransform}',\text{ptransform}',\text{arbMean}',\text{arbMean})
\]

\[
OBJ = \text{cubBayesLattice}_g(f,\text{dim}',\text{absTol}',\text{absTol}',\text{relTol}',\text{relTol}',
\quad \text{order}',\text{order}',\text{ptransform}',\text{ptransform}',\text{arbMean}',\text{arbMean})
\]

\[
[Q,\text{OutP}] = \text{compInteg}(OBJ)
\]

\[
[OBJ,Q] = \text{cubBayesLattice}_g(f,\text{dim})
\]

\[
[OBJ,Q] = \text{cubBayesLattice}_g(f,\text{dim},\text{absTol},\text{relTol})
\]

\[
[OBJ,Q] = \text{cubBayesLattice}_g(f,\text{dim},\text{inParms})
\]

11.2 Description

\[
[OBJ,Q] = \text{cubBayesLattice}_g(f,\text{dim}',\text{absTol}',\text{absTol}',\text{relTol}',\text{relTol}',\text{order}',\text{order}',\text{ptransform}',\text{ptransform}',
\quad \text{arbMean}',\text{arbMean})
\]

initializes the object with the given parameters and also returns an estimate of integral \(Q\).

\[
[Q,\text{OutP}] = \text{compInteg}(OBJ)
\]

estimates the integral of \(f\) over hyperbox \([0, 1]^\text{dim}\) using rank-1 Lattice sampling to within a specified generalized error tolerance, \(\text{tolfun} = \max(\text{abstol}, \text{reltol} \times |I|)\), i.e., \(|I - Q| \leq \text{tolfun}\) with confidence of at least 99\%, where \(I\) is the true integral value, \(Q\) is the estimated integral value, abstol is the absolute error tolerance, and reltol is the relative error tolerance. Usually the reltol determines the accuracy of the estimation; however, if \(|I|\) is rather small, then abstol determines the accuracy of the estimation. Given the construction of our Lattices, \(d\) must be a positive integer with \(1 \leq d \leq 600\). For higher dimensions, it is recommended to use simpler periodization transformation like ‘Baker’.

It is recommended to use \text{compInteg} for estimating the integral repeatedly after the object initialization.

\text{OutP} is the structure holding additional output params, more details provided below. Input \(f\) is a function handle that accepts an \(n \times d\) matrix input, where \(d\) is the dimension of the hyperbox, and \(n\) is the number of points being evaluated simultaneously.

The following additional input parameter passing styles also supported:

\[
[OBJ,Q] = \text{cubBayesLattice}_g(f,\text{dim})
\]

estimates the integral of \(f\) over hyperbox \([0, 1]^\text{dim}\) using rank-1 Lattice sampling. All other input parameters are initialized with default values as given below. Returns the initialized object \(OBJ\) and the estimate of integral \(Q\).

\[
[OBJ,Q] = \text{cubBayesLattice}_g(f,\text{dim},\text{absTol},\text{relTol})
\]

estimates the integral of \(f\) over hyperbox \([0, 1]^\text{dim}\) using rank-1 Lattice sampling. All parameters should be input in the order specified above. The answer is given within the generalized error tolerance tolfun. All other input parameters are initialized with default values as given below.

\[
[OBJ,Q] = \text{cubBayesLattice}_g(f,\text{dim},\text{inParms})
\]

estimates the integral of \(f\) over hyperbox \([0, 1]^\text{dim}\) using rank-1 Lattice sampling. The structure \text{inParms} shall hold the optional input parameters.
Input Arguments
• \(f \) — the integrand.
• \(\text{dim} \) — number of dimensions of the integrand.

Optional Input Arguments
• \(\text{absTol} \) — absolute error tolerance \(| I - Q | \leq \text{absTol} \). Default is 0.01
• \(\text{relTol} \) — relative error tolerance \(| I - Q | \leq I \times \text{relTol} \). Default is 0
• \(\text{order} \) — order of the Bernoulli polynomial of the kernel \(r=1,2 \). If \(r=0 \), algorithm automatically chooses the kernel order which can be a non-integer value. Default is 2
• \(\text{ptransform} \) — periodization variable transform to use: ’Baker’, ’C0’, ’C1’, ’C1sin’, or ’C2sin’. Default is ’C1sin’
• \(\text{arbMean} \) — If false, the algorithm assumes the integrand was sampled from a Gaussian process of zero mean. Default is ’true’
• \(\text{alpha} \) — confidence level for a credible interval of \(Q \). Default is 0.01
• \(\text{mmin} \) — min number of samples to start with: \(2^{\text{mmin}} \). Default is 10
• \(\text{mmax} \) — max number of samples allowed: \(2^{\text{mmax}} \). Default is 22
• \(\text{useGradient} \) — If true uses gradient descent in parameter search. Default is false
• \(\text{oneTheta} \) — If true uses common shape parameter for all dimensions, else allow shape parameter vary across dimensions. Default is true

Output Arguments
• \(n \) — number of samples used to compute the integral of \(f \).
• \(\text{time} \) — time to compute the integral in seconds.
• \(\text{exitFlag} \) — indicates the exit condition of the algorithm:
 1: integral computed within the error tolerance and without exceeding max sample limit \(2^{\text{mmax}} \)
 2: used max number of samples and yet not met the error tolerance
• \(\text{ErrBd} \) — estimated integral error \(| I - Q | \)
• \(\text{optParams} \) — optional parameters useful to debug and get better understanding of the algorithm
• \(\text{optParams.aMLEAll} \) — returns the shape parameters computed

11.3 Guarantee
This algorithm attempts to calculate the integral of function \(f \) over the hyperbox \([0,1]^\text{dim}\) to a prescribed error tolerance \(\text{tolfun} := \max(\text{absTol,relTol}*|I|) \) with guaranteed confidence level, e.g., 99% when \(\text{alpha}=0.5\% \). If the algorithm terminates without showing any warning messages and provides an answer \(Q \), then the following inequality would be satisfied:
\[\Pr(|Q - I| \leq \text{tolfun}) = 99\% \]
Please refer to our paper [25] for detailed arguments and proofs.
11.4 Examples

Example 1: Integrating a simple Quadratic function
Estimate the integral with integrand \(f(x) = x^2 \) over the interval \([0, 1]\) with default parameters: order=2, ptransform=C1sin, abstol=0.01, relTol=0

\[
\text{warning('off','GAIL:cubBayesLattice_g:fdnotgiven')}
\]
\[
[~,\text{muhat}] = \text{cubBayesLattice_g};
\]
\[
\text{exactInteg} = 1.0/3;
\]
\[
\text{warning('on','GAIL:cubBayesLattice_g:fdnotgiven')}
\]
\[
\text{check} = \text{double}(\text{abs(exactInteg-muhat) < 0.01})
\]

\[
\text{check} = 1
\]

Example 2: ExpCos Estimate the integral of Exponential of Cosine function \(f(x) = \exp\left(\sum_{i=1}^{2} \cos(2\pi x_i)\right) \) over the interval \([0, 1]^2\) with parameters: order=2, C1sin variable transform, abstol=0.001, relTol=0.01

\[
\text{fun} = @(x) \exp(\text{sum}(\cos(2\pi x), 2));
\]
\[
\text{dim}=2; \text{absTol}=1e-3; \text{relTol}=1e-2;
\]
\[
\text{exactInteg} = \text{besseli}(0,1)^\text{dim};
\]
\[
\text{inputArgs} = \{\text{'relTol'},\text{relTol}, \text{'order'},2, \text{'ptransform'},\text{'C1sin'}\};
\]
\[
\text{inputArgs} = [\text{inputArgs} \{\text{'absTol'},\text{absTol}, \text{'oneTheta'},\text{false}\}];
\]
\[
\text{obj}=\text{cubBayesLattice_g}(\text{fun},\text{dim},\text{inputArgs}::);
\]
\[
[\text{muhat},\text{outParams}]=\text{compInteg}(\text{obj});
\]
\[
\text{check} = \text{double}(\text{abs(exactInteg-muhat) < max(absTol,relTol*abs(exactInteg)))}
\]
\[
\text{etaDim} = \text{size(outParams.optParams.aMLEAll, 2)}
\]

\[
\text{check} = 1
\]
\[
\text{etaDim} = 2
\]

Example 3: Keister function Estimate the integral with keister function as integrand over the interval \([0, 1]^2\) with parameters: order=2, C1 variable transform, abstol=0.001, relTol=0.01

\[
\text{dim}=3; \text{absTol}=1e-3; \text{relTol}=1e-2;
\]
\[
\text{normsqd} = @(t) \text{sum}(t.*t,2); \quad \% \text{squared } L_2 \text{ norm of } t
\]
\[
\text{replaceZeros} = @(t) (t+(t==0)*\text{eps}); \quad \% \text{to avoid getting infinity, NaN}
\]
\[
\text{yinv} = @(t)(\text{erfcinv}(\text{replaceZeros}(\text{abs}(t))));
\]
\[
\text{ft} = @(t,\text{dim}) \text{cos}(\sqrt{\text{normsqd}(\text{yinv}(t))}) \ast (\text{sqrt}(\pi)^\text{dim};
\]
\[
\text{fKeister} = @(x) \text{ft}(x,\text{dim}); \quad \text{exactInteg} = \text{Keistertrue}(\text{dim});
\]
\[
\text{inputArgs} = \{\text{'absTol'},\text{absTol}, \text{'relTol'},\text{relTol}\};
\]
\[
\text{inputArgs} = [\text{inputArgs} \{\text{'order'},2, \text{'ptransform'},\text{'C1'}, \text{'arbMean'},\text{true}\}];
\]
\[
\text{obj}=\text{cubBayesLattice_g}(\text{fKeister},\text{dim},\text{inputArgs}::);
\]
\[
[\text{muhat},\text{outParams}]=\text{compInteg}(\text{obj});
\]
\[
\text{check} = \text{double}(\text{abs(exactInteg-muhat) < max(absTol,relTol*abs(exactInteg)))}
\]
\[
\text{etaDim} = \text{size(outParams.optParams.aMLEAll, 2)}
\]

\[
\text{check} = 1
\]
\[
\text{etaDim} = 1
\]
Example 4: Multivariate normal probability

Estimate the multivariate normal probability for the given hyper interval \((-6 \ -2 -2)\) and \((5 2 1)\) in \(\mathbb{R}^3\)

having zero mean and covariance \(\begin{pmatrix} 4 & 1 & 1 \\ 0 & 1 & 0.5 \\ 0 & 0 & 0.25 \end{pmatrix}\) with parameters: order=1, C1sin variable transform,

abstol=0.001, relTol=0.01

dim=2; abstol=1e-3; relTol=1e-2; fName = 'MVN';
C = [4 1 1; 0 1 0.5; 0 0 0.25]; MVNParams.Cov = C'*C; MVNParams.C = C;
MVNParams.a = [-6 -2 -2]; MVNParams.b = [5 2 1]; MVNParams.mu = 0;
MVNParams.CovProp.C = chol(MVNParams.Cov)';
muBest = 0.676337324357787;
integrand = @(t) GenzFunc(t,MVNParams);
inputArgs={'absTol',absTol,'relTol',relTol};
inputArgs=[inputArgs {'order',1,'ptransform','C1sin','arbMean',true}];
inputArgs=[inputArgs {'useGradient',true}];
[~,muhat]=cubBayesLattice_g(integrand,dim, inputArgs{:});
check = double(abs(muBest-muhat) < max(absTol,relTol*abs(muBest)))

Example 5: Keister function

Estimating the Keister integral with Kernel order \(r\) chosen automatically

dim=2; abstol=1e-3; relTol=1e-2;
normsqd = @(t) sum(t.*t,2); %squared l_2 norm of t
replaceZeros = @(t) (t+(t==0)*eps); % to avoid getting infinity, NaN
yinv = @(t)(erfcinv(replaceZeros(abs(t))));
ft = @(t,dim) cos(sqrt(normsqd(yinv(t)))) *(sqrt(pi))^dim;
fKeister = @(x) ft(x,dim); exactInteg = Keistertrue(dim);
inputArgs ={'order',0, 'ptransform','C1','arbMean',true}];
obj=cubBayesLattice_g(fKeister,dim,inputArgs{:});
[muhat,outParams] = compInteg(obj);
check = double(abs(exactInteg-muhat) < max(absTol,relTol*abs(exactInteg)))
check = double(outParams.optParams.r > 0)

Example 6

A simple example which uses dimension specific shape parameter

const = [1E-4 1 1E4];
fun = @(x)sum(bsxfun(@times, const, sin(2*pi*x.^2)), 2);
dim=3; abstol=1e-3; relTol=1e-2;
exactInteg = fresnels(2)*sum(const)/2;
inputArgs = {'relTol', relTol, 'order', 2, 'ptransform', 'C1sin'};
inputArgs = [inputArgs {'absTol', absTol, 'oneTheta', false, 'useGradient', false}];
obj = cubBayesLattice_g(fun, dim, inputArgs{:});
[muhat, outParams] = compInteg(obj);
check = double(abs(exactInteg - muhat) < max(absTol, relTol*abs(exactInteg)))
etaDim = size(outParams.optParams.aMLEAll, 2)

check =
 1
etaDim =
 3

11.5 See Also

cubBayesNet_g, cubSobol_g, cubLattice_g, cubMC_g, meanMC_g, meanMC_CLT, integral_g
12 cubBayesNet_g

Bayesian cubature method to estimate the integral of a random variable using digital nets over a d-dimensional region within a specified generalized error tolerance with guarantees under Bayesian assumptions. Currently, only Sobol points are supported.

12.1 Syntax

\[\text{OBJ, Q} = \text{cubBayesNet}_g(f, \text{dim}, \text{absTol}, \text{relTol}, \text{order}, \text{arbMean}, \text{arbMean}) \]

\[\text{OBJ} = \text{cubBayesNet}_g(f, \text{dim}, \text{absTol}, \text{relTol}, \text{order}, \text{arbMean}, \text{arbMean}) \]

\[\text{[Q, OutP]} = \text{compInteg(OBJ)} \]

\[\text{OBJ, Q} = \text{cubBayesNet}_g(f, \text{dim}) \]

\[\text{OBJ, Q} = \text{cubBayesNet}_g(f, \text{dim, absTol, relTol}) \]

\[\text{OBJ, Q} = \text{cubBayesNet}_g(f, \text{dim, inParams}) \]

12.2 Description

\[\text{OBJ, Q} = \text{cubBayesNet}_g(f, \text{dim}, \text{absTol}, \text{relTol}, \text{order}, \text{arbMean}, \text{arbMean}) \]; initializes the object with the given parameters and also returns an estimate of integral Q.

\[\text{[Q, OutP]} = \text{compInteg(OBJ)} \] estimates the integral of f over hyperbox [0, 1]^dim using digital nets (Sobol points) to within a specified generalized error tolerance, tolfun = max(abstol, reltol*|I|), i.e., |I - Q| <= tolfun with confidence of at least 99%, where I is the true integral value, Q is the estimated integral value, abstol is the absolute error tolerance, and reltol is the relative error tolerance. Usually the reltol determines the accuracy of the estimation; however, if |I| is rather small, then abstol determines the accuracy of the estimation.

It is recommended to use \text{compInteg} for estimating the integral repeatedly after the object initialization.

OutP is the structure holding additional output params, more details provided below. Input f is a function handle that accepts an n x d matrix input, where d is the dimension of the hyperbox, and n is the number of points being evaluated simultaneously.

The following additional input parameter passing styles also supported:

\[\text{OBJ, Q} = \text{cubBayesNet}_g(f, \text{dim}) \]; estimates the integral of f over hyperbox [0, 1]^dim using digital nets (Sobol points). All other input parameters are initialized with default values as given below. Returns the initialized object OBJ and the estimate of integral Q.

\[\text{OBJ, Q} = \text{cubBayesNet}_g(f, \text{dim, absTol, relTol}) \]; estimates the integral of f over hyperbox [0, 1]^dim using digital nets (Sobol points). All parameters should be input in the order specified above. The answer is given within the generalized error tolerance tolfun. All other input parameters are initialized with default values as given below.

\[\text{OBJ, Q} = \text{cubBayesNet}_g(f, \text{dim, inParams}) \]; estimates the integral of f over hyperbox [0, 1]^dim using digital nets (Sobol points). The structure inParams shall hold the optional input parameters.

Input Arguments

- f — the integrand
- dim — number of dimensions of the integrand
Optional Input Arguments

- **absTol** — absolute error tolerance \(| I - Q | \leq absTol \). Default is 0.01
- **relTol** — relative error tolerance \(| I - Q | \leq I \times relTol \). Default is 0
- **arbMean** — If false, the algorithm assumes the integrand was sampled from a Gaussian process of zero mean. Default is 'true'
- **alpha** — confidence level for a credible interval of \(Q \). Default is 0.01
- **mmin** — min number of samples to start with: \(2^{mmin} \). Default is 8
- **mmax** — max number of samples allowed: \(2^{mmax} \). Default is 20

Output Arguments

- **n** — number of samples used to compute the integral of \(f \).
- **time** — time to compute the integral in seconds.
- **exitFlag** — indicates the exit condition of the algorithm:
 1: integral computed within the error tolerance and without exceeding max sample limit \(2^{mmax} \)
 2: used max number of samples and yet not met the error tolerance
- **ErrBd** — estimated integral error \(| I - Q | \)
- **optParams** — optional parameters useful to debug and get better understanding of the algorithm
- **optParams.aMLEAll** — returns the shape parameters computed

12.3 Guarantee

This algorithm attempts to calculate the integral of function \(f \) over the hyperbox \([0, 1]^\text{dim}\) to a prescribed error tolerance \(\text{tolfun} := \max(\text{abstol}, \text{reltol} \times |I|) \) with guaranteed confidence level, e.g., 99% when \(\text{alpha}=0.5\% \). If the algorithm terminates without showing any warning messages and provides an answer \(Q \), then the following inequality would be satisfied:

\[\Pr(|Q - I| \leq \text{tolfun}) = 99\% \]

Please refer to our paper [24] for detailed arguments and proofs.

12.4 Examples

Example 1: Quadratic

Estimate the integral with integrand \(f(x) = x^2 \) over the interval \([0, 1]\) with default parameters: \(\text{order}=1 \), \(\text{abstol}=0.01 \), \(\text{relTol}=0 \)

```matlab
warning('off','GAIL:cubBayesNet_g:fdnotgiven')
 [~,muhat] = cubBayesNet_g;
 exactInteg = 1.0/3;
 warning('on','GAIL:cubBayesNet_g:fdnotgiven')
 check = double(abs(exactInteg-muhat) < 0.01)
```

check =

1
Example 2: ExpCos Estimate the integral with integrand $f(x) = \exp \left(\sum_{i=1}^{2} \cos(2\pi x_i) \right)$ over the interval $[0,1]^2$ with parameters: order=2, abstol=0.001, relTol=0.01

fun = @(x) exp(sum(cos(2*pi*x), 2));
dim=2; abstol=1e-3; relTol=1e-2;
exactInteg = besseli(0,1)^dim;
inputArgs = {'absTol',abstol,'relTol',relTol};
[~,muhat]=cubBayesNet_g(fun, dim, inputArgs{:});
check = double(abs(exactInteg-muhat) < max(abstol,relTol*abs(exactInteg)))

Example 3: Keister function Estimate the Keister's integrand, a multidimensional integral inspired by a physics application over the interval $[0,1]^2$ with parameters: order=2, abstol=0.001, relTol=0.01

dim=2; abstol=1e-3; relTol=1e-2;
normsqd = @(t) sum(t.*t,2); % squared l_2 norm of t
replaceZeros = @(t) (t+(t==0)*eps); % to avoid getting infinity, NaN
yinv = @(t) erfcinv(replaceZeros(abs(t))) ;
ft = @(t,dim) cos(sqrt(normsqd(yinv(t)))) *(sqrt(pi))^dim;
fKeister = @(t) ft(t,x,dim); exactInteg = Keistertrue(dim);
inputArgs ={'absTol',absTol,'relTol',relTol};
inputArgs =[inputArgs {'arbMean',true}];
[~,muhat]=cubBayesNet_g(fKeister,dim,inputArgs{:});
check = double(abs(exactInteg-muhat) < max(abstol,relTol*abs(exactInteg)))

Example 4: Multivariate normal probability For $X \sim N(\mu, \Sigma)$, estimate the following probability:

$$P(a \leq X \leq b) = \int_a^b \frac{e^{(x-\mu)^T \Sigma^{-1} (x-\mu)}}{(2\pi)^{d/2} |\Sigma|^{1/2}} dx.$$

Given
\[
\begin{pmatrix}
-6 \\
-2 \\
-2
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
5 \\
2 \\
1
\end{pmatrix}
\]
with zero mean $\mu = 0$ and covariance
\[
\begin{pmatrix}
4 & 1 & 1 \\
0 & 1 & 0.5 \\
0 & 0 & 0.25
\end{pmatrix}
\]

$C = \begin{bmatrix} 4 & 1 & 1 \\ 0 & 1 & 0.5 \\ 0 & 0 & 0.25 \end{bmatrix}$; MVNParams Cov = C’*C; MVNParams.C = C;
MVNParams.a = [-6 -2 -2]; MVNParams.b = [5 2 1]; MVNParams.mu = 0;
MVNParams.CovProp.C = chol(MVNParams.Cov)';
muBest = 0.676337324357787;
integrand = @(t) GenzFunc(t,MVNParams);
inputArgs ={'absTol',absTol,'relTol',relTol};
inputArgs =[inputArgs {'arbMean',true}];
obj = cubBayesNet_g(integrand,dim, inputArgs{:});
[muhat,outParams] = compInteg(obj);
check = double(abs(muBest-muhat) < max(abstol,relTol*abs(muBest)))
etaDim = size(outParams.optParams.aMLEAll, 2)

check =
1
etaDim =
1
12.5 See Also

cubBayesLattice, cubSobol, cubLattice, cubMC, meanMC, meanMC_CLT, integral
13 Demos

13.1 A GUI (graphical user interface) for funappx_g

To approximate a peaky function with funappx_g and to show how funappx_g generates grid points for locally adaptive linear spline approximation

Function definition

Define a peaky function as follows:

```matlab
close all; clear all; format compact; format short;
f = @(x) exp(-1000*(x-0.2).^2);
x = 0:0.0001:1;
figure;
plot(x,f(x))
axis tight
```

![Graph of peaky function](image)

Function Approximation

We use funappx_g to approximate f over the interval $[0,1]$ with error tolerance 10^{-2} and 15 initial subintervals:

```matlab
[~,out_param] = funappx_g(@(x) exp(-1000*(x-0.2).^2),0,1,1e-2,15)
```

We find that to reach the error tolerance, we need 105 points to approximate the function.

```matlab
out_param =
    a: 0
    abstol: 0.0100
    b: 1
    f: @(x)exp(-1000*(x-0.2).^2)
    maxiter: 1000
    ninit: 15
    nmax: 10000000
    exitflag: [0 0]
    iter: 7
```
Process to Generate Grid Points

Step 1: start with 16 evenly spaced points:

![Graph showing 16 evenly spaced points with error bound and number of points information.]

Step 2: add points to the peaky part:

![Graph showing additional points added to the peaky part with new error bound and number of points information.]

npoints: 105
errest: 0.0028
Step 6: after several iterations, the approximation error almost meets the given tolerance:

![Error bound graph](image1)

Step 7: the error tolerance is reached:

![Error bound graph](image2)

This process can also be reproduced by the following command:

```matlab
funappx_g_gui(@(x) exp(-100*(x-0.2).^2),0,1,1e-2,15,15);
```

13.2 Compare `funmin_g` with `fminbnd` and `chebfun`

Function definition and minimization

Define a function with two minima as follows:

\[
f(x) = -5 \exp(-100(x - 0.15)^2) - \exp(-80(x - 0.65)^2).
\]
We use \texttt{funmin.g} \cite{6, 28}, MATLAB’s \texttt{fminbnd} \cite{1, 15}, and Chebfun’s \texttt{min} \cite{16} to find the minimum of f over the interval $[0,1]$.

\textbf{Set up}

\begin{verbatim}
close all; clearvars; format compact; format short;
gail.InitializeDisplay
set(0,'defaultLineMarkerSize',15)
\end{verbatim}

\textbf{Plot function}

\begin{verbatim}
xplot = 0:0.001:1;
fplot = fmin_ex1(xplot);
h(1) = plot(xplot,fplot,'-');
set(h(1),'color',MATLABBlue)
h_legend = legend([h(1)],{'$f(x)$'},'Location','Southeast');
set(h_legend,'interpreter','latex');
hold on
\end{verbatim}

\begin{center}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{f(x).pdf}
\caption{$f(x)$}
\end{figure}
\end{center}

\textbf{Plot minimum values and sample points}

\begin{verbatim}
xAll = [];
fAll = [];
save fmin_ex1X xAll fAll
[ffmg,outfmg] = funmin_g(@fmin_ex1,0,1);
h(2) = plot(mean(outfmg.intervals),ffmg,'.');
set(h(2),'color',MATLABGreen,'MarkerSize',80)
load fmin_ex1X xAll fAll
h(3) = plot(xAll,fAll,'.');
set(h(3),'color',MATLABGreen)
\end{verbatim}

% \texttt{fminbnd}
\begin{verbatim}
xAll = [];
fAll = [];
\end{verbatim}
save fmin_ex1X xAll fAll
options = optimset('TolX',outfmg.abstol,'TolFun',outfmg.abstol);
[xfmb,ffmb] = fminbnd(@fmin_ex1,0,1,options);
h(4) = plot(xfmb,ffmb,'.');
set(h(4),'color',MATLABOrange,'MarkerSize',80)
load fmin_ex1X xAll fAll
h(5) = plot(xAll,fAll,'.');
set(h(5),'color',MATLABOrange)
% chebfun
xAll = [];
fAll = [];
save fmin_ex1X xAll fAll
chebf = chebfun(@fmin_ex1,[0,1],'
chebfval = min(chebf);
chebxvals = roots(diff(chebf));
[v,i] = min(abs(fmin_ex1(chebxvals)-chebfval));
chebxval = chebxvals(i);
chebn = length(chebf);
h(6) = plot(chebxval,chebfval,'o');
set(h(6),'color',MATLABPurple,'MarkerSize',20)
load fmin_ex1X xAll fAll
h(7) = plot(xAll,fAll,'.');
set(h(7),'color',MATLABPurple)
h_legend = legend([h(1) h(2) h(4) h(6) h(5) h(7)],'$$f(x)$$','funmin_g''s min','funmin_g''s sample','fminbnd''s min','fminbnd''s sample','chebfun''s min','chebfun''s sample',...
'Location','Southeast');
set(h_legend,'interpreter','latex');

function y = fmin_ex1(x)
if exist('fmin_ex1X.mat','file')
 load fmin_ex1X xAll fAll
else
 xAll = [];
 fAll = [];
end
xAll = [xAll; x(:)];
y = -5*exp(-100*(x-0.15).^2) - exp(-80*(x-0.65).^2);
fAll = [fAll; y(:)];
save fmin_ex1X xAll fAll
end
13.3 Integrate a spiky function using integral_g

Function definition

This example is taken from [1], where a function is defined on [0, 1] with twelve spikes.

close all; clear all; format compact; format short e;
[~,~,MATLABVERSION] = GAILstart(false);

xquad = 0.13579; % number used by quad to split interval into three parts
xleft = [0 xquad/2 xquad 3*xquad/2 2*xquad];
xctr = [2*xquad 1/4+xquad 1/2 3/4-xquad 1-2*xquad];
xrght = [1-2*xquad 1-3*xquad/2 1-xquad 1-xquad/2 1];
xall = [xleft xctr(2:5) xrght(2:5)]';
nnode = length(xall);

fbump = @(x) 4^3*((x.*(1-x)).^3).*((x>=0)&(x<=1)); % one bump
xplot = (0:0.002:1)'; % points to plot
spikyfun = @(x) foolfunmaker(x, @(x,c) fbump((x-c(1))/c(2)),
 ones(nnode-1,1), [xall(1:nnode-1) diff(xall)]);

Plot of the spiky function

In the following, we plot \(f(x) \) and show the data sampling points picked by MATLAB’s built-in integration function quad, which explains why quad essentially gives the answer zero for our spiky function:

figure;
h = plot(xplot,spikyfun(xplot), 'k-', xall, zeros(nnode,1), 'k.');
axis([0 1 -0.3 1.1])
set(gca,'Ytick',-0.2:0.2:1)
legend(h,{'$f(x)$','data'},'location','southeast')
Integral approximation

We use MATLAB built-in functions and \texttt{integral_g} from GAIL to integrate f over the unit interval:

\begin{verbatim}
a = 0;
b = 1;
abstol = 1e-11;
if MATLABVERSION \geq 8,
 MATintegralspiky = integral(spikyfun,a,b,'AbsTol',abstol)
end
MATquadspiky = quad(spikyfun,a,b,abstol)
MATgailspiky = integral_g(spikyfun,a,b,abstol)
\end{verbatim}

\begin{verbatim}
MATintegralspiky =
 4.5714e-01
MATquadspiky =
 2.7021e-44
MATgailspiky =
 4.5714e-01
\end{verbatim}

Compute approximation errors

The true integral value of the spiky function is $16/35$. The following code computes absolute errors from the above approximation methods. Only \texttt{integral_g} achieves the required accuracy with respect to the absolute tolerance of 10^{-11} in this example.

\begin{verbatim}
integralspiky = 16/35;
if MATLABVERSION \geq 8,
 abs_errors = abs(integralspiky - [MATintegralspiky, MATquadspiky, MATgailspiky])
else
 abs_errors = abs(integralspiky - [MATquadspiky, MATgailspiky])
end
if meet_abstol = (abs_errors < abstol)
\end{verbatim}
abs_errors =
6.1854e-10 4.5714e-01 1.4322e-14
if_meet_abstol =
0 0 1

13.4 Counting the success rate of meanMC_g

Define an integration problem as follows:

\[I = \int_{0}^{1} x^2 \, dx. \]

The analytical solution is \(\frac{1}{3} \). If we use meanMC_g to estimate the integral with 1000 replications, we expect the success rate to be bigger than or equal to \((1 - \alpha)\).

success = 0;
n = 1000;
in_param.reltol = 0; in_param.abstol = 1e-3;
in_param.alpha = 0.05; Yrand = @(n) rand(n,1).^2;
exactsol = 1/3;
for i = 1:n,
 tmu = meanMC_g(Yrand,in_param);
 check = abs(exactsol-tmu) < 1e-3;
 if check == 1,
 success = success + 1;
 end
end
disp(['Over ' num2str(n) ' replications, there are ' num2str(success) ' successes.'])
disp(['The success rate is ' num2str(success/n) ', which is larger than '...
 num2str(1-in_param.alpha) '.'])

Over 1000 replications, there are 991 successes.
The success rate is 0.991, which is larger than 0.95.

13.5 Estimation of normal probabilities by by multiple integration algorithms in GAIL

For \(X \sim N(\mu, \Sigma) \), we will estimate the following probability:

\[P(a \leq X \leq b) = \int_{a}^{b} \frac{e^{(x-\mu)^T\Sigma^{-1}(x-\mu)}}{(2\pi)^{d/2} |\Sigma|^{1/2}} \, dx. \]

We present three tests, each of which approximates the aforementioned probability using cubSobol_g, cubMC_g and cubBayesLattice_g, cubLattice_g, and cubBayesNet_g which are quasi-Monte Carlo, IID Monte Carlo and Bayesian cubature algorithms respectively in GAIL. In order to facilitate the computations when \(d \) is high (>4), we are going to apply a special transformation of the integrand proposed by Alan Genz.
Basic integration parameters set up

For all the examples, the dimension of the problem is \(d = 20 \). The user input tolerances are also set up below: \(\text{abstol} \) is the absolute error tolerance, and \(\text{reltol} \) the relative error tolerance. When \(\text{reltol} \) is set to 0, the algorithms use pure absolute error bound, and vice versa. Finally, for simplicity we define the mean of the distribution to be \(\mu = 0 \):

```matlab
function demo_normal_probabilities_small(nRep)

d = 20;  \% Dimension of the problem
abstol = 1e-3; \% User input, absolute error bound
reltol = 0; \% User input, relative error bound
mu = zeros(d,1); \% Mean of the distribution
if nargin < 1
    nRep = 10;
end
nTest = 2;
Ivec(nTest) = 0;
approx_prob_MC(nRep,nTest) = 0;
\% out_param_MC(nRep,nTest) = 0;
timeMC(nRep,nTest) = 0;
nSampleMC(nRep,nTest) = 0;

approx_prob_sobol(nRep,nTest) = 0;
\% out_param_sobol(nRep,nTest) = 0;
timeSob(nRep,nTest) = 0;
nSampleSob(nRep,nTest) = 0;

approx_prob_lat(nRep,nTest) = 0;
\% out_param_lat(nRep,nTest) = 0;
timeLat(nRep,nTest) = 0;
nSampleLat(nRep,nTest) = 0;

approx_prob_BayLat(nRep,nTest) = 0;
\% out_param_BayLat(nRep,nTest) = 0;
timeBayLat(nRep,nTest) = 0;
nSampleBayLat(nRep,nTest) = 0;

approx_prob_BaySob(nRep,nTest) = 0;
timeBaySob(nRep,nTest) = 0;
nSampleBaySob(nRep,nTest) = 0;

First test: \( \Sigma = I_d \)

For this first example, we consider \( \Sigma = I_d \), and \( \mathbf{b} = -\mathbf{a} = (3.5, \ldots, 3.5) \). In this case, the solution of the integral is known so we can verify that the error conditions are met:

\[
\text{Sigma} = \text{eye}(d); \% \text{We set the covariance matrix to the identity factor} = 3.5;
\text{hyperbox} = [-\text{factor} \times \text{ones}(1,d); \text{factor} \times \text{ones}(1,d)]; \% \text{We define the integration limits}
\text{exactsol} = (\text{gail.stdnormcdf(factor)} - \text{gail.stdnormcdf(-factor)})^d; \% \text{Exact integral solution}
\text{Ivec}(1) = \text{exactsol};
\]
% Solution approx_prob and integration output parameters in out_param
% Test 1.1: cubMC_g
for k=1:nRep
    [approx_prob_MC(k,1),out_param_MC(k,1)] = multi_normcdf_cubMC(hyperbox,mu,Sigma,abstol,reltol);
end
timeMC(:,1) = [out_param_MC(:,1).time];
nSampleMC(:,1) = [out_param_MC(:,1).ntot];
report_integration_result('Test 1.1', 'cubMC_g',abstol,reltol,exactsol,...
    mean(approx_prob_MC(:,1)),mean(timeMC(:,1)),mean(nSampleMC(:,1)))

% Test 1.2: cubLattice_g
for k=1:nRep
    [approx_prob_lat(k,1),out_param_lat(k,1)] =
    multi_normcdf_cubLat(hyperbox,mu,Sigma,abstol,reltol);
end
timeLat(:,1) = [out_param_lat(:,1).time];
nSampleLat(:,1) = [out_param_lat(:,1).n];
report_integration_result('Test 1.2', 'cubLattice_g',abstol,reltol,exactsol,...
    mean(approx_prob_lat(:,1)),mean(timeLat(:,1)),mean(nSampleLat(:,1)))

% Test 1.3: cubSobol_g
for k=1:nRep
    [approx_prob_sobol(k,1),out_param_sobol(k,1)] =
    multi_normcdf_cubSobol(hyperbox,mu,Sigma,abstol,reltol);
end
timeSob(:,1) = [out_param_sobol(:,1).time];
nSampleSob(:,1) = [out_param_sobol(:,1).n];
report_integration_result('Test 1.3', 'cubSobol_g',abstol,reltol,exactsol,...
    mean(approx_prob_sobol(:,1)),mean(timeSob(:,1)),mean(nSampleSob(:,1)))

% Test 1.4: cubBayesLattice_g
for k=1:nRep
    [approx_prob_BayLat(k,1),out_param_BayLat(k,1)] =
    multi_normcdf_cubBayesLat(hyperbox,mu,Sigma,abstol,reltol);
end
timeBayLat(:,1) = [out_param_BayLat(:,1).time];
nSampleBayLat(:,1) = [out_param_BayLat(:,1).n];
report_integration_result('Test 1.4', 'cubBayesLattice_g', abstol,reltol,...
    NaN,mean(approx_prob_BayLat(:,1)), (mean(timeBayLat(:,1))), (mean(nSampleBayLat(:,1))))

% Test 1.5: cubBayesNet_g
for k=1:nRep
    [approx_prob_BaySob(k,1),out_param_BaySob(k,1)] =
    multi_normcdf_cubBayesNet(hyperbox,mu,Sigma,abstol,reltol);
end
timeBaySob(:,1) = [out_param_BaySob(:,1).time];
nSampleBaySob(:,1) = [out_param_BaySob(:,1).n];
report_integration_result('Test 1.5', 'cubBayesNet_g', abstol,reltol,NaN,...
    mean(approx_prob_BaySob(:,1)),mean(timeBayLat(:,1)),mean(nSampleBayLat(:,1)))

Test 1.1: cubMC_g
    Estimated probability: 0.990736
    True probability: 0.990736
    The algorithm took 0.050 seconds and 10013 points
Test 1.2: cubLattice_g
Estimated probability: 0.990736
True probability: 0.990736
The algorithm took 0.023 seconds and 1024 points
Real error is 2.709e-14, which is less than the tolerance 1.000e-03

Test 1.3: cubSobol_g
Estimated probability: 0.990736
True probability: 0.990736
The algorithm took 0.018 seconds and 1024 points
Real error is 2.709e-14, which is less than the tolerance 1.000e-03

Test 1.4: cubBayesLattice_g
Estimated probability: 0.990736
The algorithm took 0.004 seconds and 256 points

Test 1.5: cubBayesNet_g
Estimated probability: 0.990736
The algorithm took 0.004 seconds and 256 points

Second test: $\Sigma = 0.4I_d + 0.611^T$
For this second example, we consider $\Sigma = 0.4I_d + 0.611^T$ (1 on the diagonal, 0.6 off the diagonal), $a = (-\infty, \ldots, -\infty)$, and $b = \sqrt{d}(U_1, \ldots, U_d)$ ($b$ is chosen randomly). The solution for this integral is known too so we can verify the real error:

```
sig = 0.6;
Sigma = sig*ones(d,d); Sigma(1:d+1:d*d) = 1; % set the covariance matrix
hyperbox = [-Inf*ones(1,d); sqrt(d)*rand(1,d)]; % define the integration limits

exactsol = integral(@(t)MVNPexact(t,hyperbox(2,:),sig),...
-Inf, inf,'Abstol',1e-8,'RelTol',1e-8)/sqrt(2*pi);
Ivec(2) = exactsol;
```

% Solution approx_prob and integration output parameters in out_param
% Test 2.1: cubMC_g
for k=1:nRep
    [approx_prob_MC(k,2),out_param_MC(k,2)] = 
    multi_normcdf_cubMC(hyperbox,mu,Sigma,abstol,reltol);
end

timeMC(:,2) = [out_param_MC(:,2).time];
nSampleMC(:,2) = [out_param_MC(:,2).ntot];
report_integration_result('Test 2.1','cubMC_g',abstol,reltol,...
    exactsol,mean(approx_prob_MC(:,2)),mean(timeMC(:,2)),mean(nSampleMC(:,2)))

% Test 2.2: cubLattice_g
for k=1:nRep
    [approx_prob_lat(k,2),out_param_lat(k,2)] = 
    multi_normcdf_cubLat(hyperbox,mu,Sigma,abstol,reltol);
end

timeLat(:,2) = [out_param_lat(:,2).time];
nSampleLat(:,2) = [out_param_lat(:,2).n];
report_integration_result('Test 2.2','cubLattice_g',abstol,reltol,...
    exactsol,mean(approx_prob_lat(:,2)),mean(timeLat(:,2)),mean(nSampleLat(:,2)))

% Test 2.3: cubSobol_g
for k=1:nRep
    ...
[approx_prob_sobol(k,2),out_param_sobol(k,2)] =
    multi_normcdf_cubSobol(hyperbox,mu,Sigma,abstol,reltol);
end

timeSob(:,2) = [out_param_sobol(:,2).time];
nSampleSob(:,2) = [out_param_sobol(:,2).n];
report_integration_result('Test 2.3','cubSobol_g',abstol,reltol,...
    exactsol,mean(approx_prob_sobol(:,2)),mean(timeSob(:,2)),mean(nSampleSob(:,2)))

% Test 2.4: cubBayesLattice_g
for k=1:nRep
    [approx_prob_BayLat(k,2),out_param_BayLat(k,2)] = multi_normcdf_cubBayesLat(...
        hyperbox,mu,Sigma,abstol,reltol);
end
timeBayLat(:,2) = [out_param_BayLat(:,2).time];
nSampleBayLat(:,2) = [out_param_BayLat(:,2).n];
report_integration_result('Test 2.4','cubBayesLattice_g',abstol,reltol,...
    NaN,mean(approx_prob_BayLat(:,2)),mean(timeBayLat(:,2)),mean(nSampleBayLat(:,2)))

% Test 2.5: cubBayesNet_g
for k=1:nRep
    [approx_prob_BaySob(k,2),out_param_BaySob(k,2)] = multi_normcdf_cubBayesNet(...
        hyperbox,mu,Sigma,abstol,reltol);
end
timeBaySob(:,2) = [out_param_BaySob(:,2).time];
nSampleBaySob(:,2) = [out_param_BaySob(:,2).n];
report_integration_result('Test 2.5','cubBayesNet_g',abstol,reltol,...
    NaN,mean(approx_prob_BaySob(:,2)),mean(timeBaySob(:,2)),mean(nSampleBaySob(:,2)))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ivec = repmat(Ivec,nRep,1);

absErrMC = abs(Ivec-approx_prob_MC);
succMC = mean(absErrMC <= abstol)
avgAbsErrMC = mean(absErrMC)

absErrSob = abs(Ivec-approx_prob_sobol);
succSob = mean(absErrSob <= abstol)
avgAbsErrSob = mean(absErrSob)

absErrLat = abs(Ivec-approx_prob_lat);
succLat = mean(absErrLat <= abstol)
avgAbsErrLat = mean(absErrLat)

absErrBayLat = abs(Ivec-approx_prob_BayLat);
succBayLat = mean(absErrBayLat <= abstol)
avgAbsErrBayLat = mean(absErrBayLat)

absErrBaySob = abs(Ivec-approx_prob_BaySob);
succBaySob = mean(absErrBaySob <= abstol)
avgAbsErrBaySob = mean(absErrBaySob)

timeMC = mean(timeMC);
timeLat = mean(timeLat);
timeSob = mean(timeSob);
timeBayLat = mean(timeBayLat);
timeBaySob = mean(timeBaySob);
nSampleMC = mean(nSampleMC);
nSampleLat = mean(nSampleLat);
nSampleSob = mean(nSampleSob);
nSampleBayLat = mean(nSampleBayLat);
nSampleBaySob = mean(nSampleBaySob);

outFileName = gail.save_mat('Paper_cubBayesLattice_g', ['MVNCubExBayesDataNRep' int2str(nRep)],... true, abstol, ... avgAbsErrMC, avgAbsErrLat, avgAbsErrSob, avgAbsErrBayLat, avgAbsErrBaySob, ... succMC, succLat, succSob, succBayLat, succBaySob, ... timeMC, timeLat, timeSob, timeBayLat, timeBaySob, ... nSampleMC, nSampleLat, nSampleSob, nSampleBayLat, nSampleBaySob);

MVNCubExBayesOut(outFileName)
fprintf('')

Test 2.1: cubMC_g
Estimated probability: 0.244175
True probability: 0.244200
The algorithm took 1.827 seconds and 1.155954e+06 points
Real error is 2.451e-05, which is less than the tolerance 1.000e-03

Test 2.2: cubLattice_g
Estimated probability: 0.244255
True probability: 0.244200
The algorithm took 0.009 seconds and 2048 points
Real error is 5.495e-05, which is less than the tolerance 1.000e-03

Test 2.3: cubSobol_g
Estimated probability: 0.244012
True probability: 0.244200
The algorithm took 0.010 seconds and 2048 points
Real error is 1.880e-04, which is less than the tolerance 1.000e-03

Test 2.4: cubBayesLattice_g
Estimated probability: 0.244300
The algorithm took 0.042 seconds and 8192 points

Test 2.5: cubBayesNet_g
Estimated probability: 0.244225
The algorithm took 0.244 seconds and 8192 points

succMC =
1 1
avgAbsErrMC =
1.0e-03 *
0.0000 0.1074
succSob =
1 1
avgAbsErrSob =
1.0e-03 *
0.0000 0.3296
succLat =
1.0000 0.8000
avgAbsErrLat =
1.0e-03 *
Third test: $\Sigma = 0.4I_d + 0.611^T$

For this last example, we consider the same covariance matrix in the second test but the upper and lower limits are different, $a = -d/3(U_1, \ldots, U_d)$, and $b = d/3(U_{d+1}, \ldots, U_{2d})$ (both $a$ and $b$ are chosen randomly):

```matlab
hyperbox = [-d/3*rand(1,d) ; (d/3)*rand(1,d)]; % We define the integration limits

% Solution approx_prob and integration output parameters in out_param
% Test 3.1: cubMC_g
[approx_prob,out_param] = multi_normcdf_cubMC(hyperbox,mu,Sigma,abstol,reltol);
report_integration_result('Test 3.1','cubMC_g',abstol,reltol,...
 NaN,approx_prob,out_param.time,out_param.ntot)

% Test 3.2: cubSobol_g
[approx_prob,out_param] = multi_normcdf_cubSobol(hyperbox,mu,Sigma,abstol,reltol);
report_integration_result('Test 3.2','cubSobol_g',abstol,reltol,...
 NaN,approx_prob,out_param.time,out_param.n)

% Test 3.3: cubBayesLattice_g
[approx_prob,out_param] = multi_normcdf_cubBayesLat(hyperbox,mu,...
 Sigma,abstol,reltol);
report_integration_result('Test 3.3','cubBayesLattice_g',abstol,reltol,...
 NaN,approx_prob,out_param.time,out_param.n)

% Test 3.4: cubBayesNet_g
[approx_prob,out_param] = multi_normcdf_cubBayesNet(hyperbox,mu,...
 Sigma,abstol,reltol);
report_integration_result('Test 3.4','cubBayesNet_g',abstol,reltol,...
 NaN,approx_prob,out_param.time,out_param.n)

fprintf('')
```

Test 3.1: cubMC_g
Estimated probability: 0.035129
The algorithm took 0.078 seconds and 38167 points

Test 3.2: cubSobol_g
Estimated probability: 0.035451
The algorithm took 0.014 seconds and 1024 points

Test 3.3: cubBayesLattice_g
Estimated probability: 0.035162
The algorithm took 0.015 seconds and 1024 points
Appendix: Auxiliary function definitions

The following functions are defined for the above test examples. multi_normcdf_cubSobol and multi_normcdf_cubMC redefine cubSobol_g and cubMC_g respectively for computing normal probabilities based on Alan Genz’s transformation. f is the function resulting from applying Alan Genz’s transform that is called in either cubSobol_g or cubMC_g.

function [p,out, y, kappanumap] = multi_normcdf_cubSobol(hyperbox,mu,...
    Sigma,abstol,reltol)
    % Using cubSobol_g, multi_normcdf_cubMC computes the cumulative
    % distribution function of the multivariate normal distribution with mean
    % mu, covariance matrix Sigma and within the region defined by hyperbox.
    hyperbox = bsxfun(@minus, hyperbox, mu');
    C = chol(Sigma)'; d = size(C,1);
    a = hyperbox(1,1)/C(1,1); b = hyperbox(2,1)/C(1,1);
    s = genLin.stdnormcdf(a); e = genLin.stdnormcdf(b);
    [p, out, y, kappanumap] = cubSobol_g(...
        @(x) f(s,e,hyperbox,x,C), [zeros(1,d-1);ones(1,d-1)],...
        'uniform',abstol,reltol);
end

function [p,out, y, kappanumap] = multi_normcdf_cubLat(hyperbox,mu,...
    Sigma,abstol,reltol)
    % Using cubLattice_g, multi_normcdf_cubLat computes the cumulative
    % distribution function of the multivariate normal distribution with mean
    % mu, covariance matrix Sigma and within the region defined by hyperbox.
    hyperbox = bsxfun(@minus, hyperbox, mu');
    C = chol(Sigma)'; d = size(C,1);
    a = hyperbox(1,1)/C(1,1); b = hyperbox(2,1)/C(1,1);
    s = genLin.stdnormcdf(a); e = genLin.stdnormcdf(b);
    [p, out, y, kappanumap] = cubLattice_g(...
        @(x) f(s,e,hyperbox,x,C), [zeros(1,d-1);ones(1,d-1)],...
        'uniform',abstol,reltol);
end

function [p, out] = multi_normcdf_cubBayesLat(hyperbox,mu,Sigma,abstol,reltol)
    % Using cubBayesLattice_g, multi_normcdf_cubBayesLat computes the cumulative
    % distribution function of the multivariate normal distribution with mean
    % mu, covariance matrix Sigma and within the region defined by hyperbox.
    hyperbox = bsxfun(@minus, hyperbox, mu');
    C = chol(Sigma)';
    a = hyperbox(1,1)/C(1,1); b = hyperbox(2,1)/C(1,1);
    s = genLin.stdnormcdf(a); e = genLin.stdnormcdf(b);
    [~,dim] = size(hyperbox);
    inputArgs = {'dim',dim, 'absTol',abstol, 'reltol',reltol, ...
        'order',1, 'ptransform','Baker', ....
        'stopAtTol',true, 'stopCriterion','full'
        'arbMean',true, 'alpha',0.01 ...
        'optTechnique','None'};
    inputArgs(end+1) = 'f'; inputArgs{end+1} = @(x) f(s,e,hyperbox,x,C);
    inputArgs{end+1} = 'fName'; inputArgs{end+1} = 'MVN';
end
objCubBayes = cubBayesLattice_g(inputArgs{:});
[p,out] = compInteg(objCubBayes);
end

function [p,out] = multi_normcdf_cubBayesNet(hyperbox,mu,Sigma,abstol,reltol)
% Using cubBayesLattice_g, multi_normcdf_cubBayesNet computes the cumulative
% distribution function of the multivariate normal distribution with mean
% mu, covariance matrix Sigma and within the region defined by hyperbox.

hyperbox = bsxfun(@minus, hyperbox, mu');
C = chol(Sigma)';
a = hyperbox(1,1)/C(1,1); b = hyperbox(2,1)/C(1,1);
s = gail.stdnormcdf(a); e = gail.stdnormcdf(b);

 [~,dim] = size(hyperbox);
inputArgs = {'dim',dim, 'absTol',abstol, 'reltol',reltol, ...
'order',1, ....
'stopAtTol',true, 'stopCriterion','full'...
'arbMean',true, 'alpha',0.01 ...
'optTechnique','None'};
inputArgs{end+1} = 'f'; inputArgs{end+1} = @(x) f(s,e,hyperbox,x,C);
inputArgs{end+1} = 'fName'; inputArgs{end+1} = 'MVN';

objCubBayes = cubBayesNet_g(inputArgs{:});
[p,out] = compInteg(objCubBayes);
end

function [Q,param] = multi_normcdf_cubMC(hyperbox,mu,Sigma,abstol,reltol)
% Using cubMC_g, multi_normcdf_cubMC computes the cumulative distribution
% function of the multivariate normal distribution with mean mu, covariance
% matrix Sigma and within the region defined by hyperbox.

hyperbox = bsxfun(@minus, hyperbox, mu');
C = chol(Sigma)'; d = size(C,1);
a = hyperbox(1,1)/C(1,1); b = hyperbox(2,1)/C(1,1);
s = gail.stdnormcdf(a); e = gail.stdnormcdf(b);

[Q,param] = cubMC_g(...
 @(x) f(s,e,hyperbox,x,C), [zeros(1,d-1);ones(1,d-1)],...
 'uniform',abstol,reltol);
end

function f_eval = f(s,e,hyperbox,w,C)
% This is the integrand resulting from applying Alan Genz's transformation,
% which is recursively defined.

f_eval = (e-s)*ones(size(w,1),1);
aux = ones(size(w,1),1);
y = [];
for i = 2:size(hyperbox,2);
y = [y gail.stdnorminv(s+w(:,i-1).*(e-s))];
aux = sum(bsxfun(@times,C(i,1:i-1),y),2);
a = (hyperbox(1,i)-aux)/C(i,i);
b = (hyperbox(2,i)-aux)/C(i,i);
s = gail.stdnormcdf(a);
e = gail.stdnormcdf(b);
f_eval = f_eval .* (e-s);
end

f_eval(isnan(f_eval)) = 0;  % reset NaN values to zero
end

function MVNPfunvalfinal = MVNPexact(t,b,sig)

% MVNPexact calculates the true solution of multivariate normal probability
% when the covariance matrix is in a special form: diagonal is 1 and off
% diagonal elements are all the same.
% b - the upper limits of the integral with size 1 x d
% sig - the off diagonal element
% dim - the dimension of the integral
% t - the variable
MVNPfunval = (gail.stdnormcdf((b(1)+sqrt(sig)*t)/sqrt(1-sig)));
dim = length(b);
for i =2:dim
    MVNPfunval= MVNPfunval.*(gail.stdnormcdf((b(i)+sqrt(sig)*t)/sqrt(1-sig)));
i=i+100;
end
MVNPfunvalfinal = MVNPfunval.*exp(-t.^2/2);
end

function report_integration_result(testId,algo,abstol,reltol,exactsol,approxsol,timeSec,nSample)

fprintf('%s: %s
', testId,algo)
fprintf(' Estimated probability: %f 
', approxsol)
if ~isnan(exactsol)
    fprintf(' True probability: %f 
', exactsol)
end
fprintf(' The algorithm took %1.3f seconds and %d points 
', timeSec,nSample)
if ~isnan(exactsol)
    errTol = gail.tolfun(abstol,reltol,1,exactsol,'max');
    errReal = abs(exactsol-approxsol);
    if errReal > errTol
        ME = MException('cubBayesLattice_g_demo:errorExceeded', ...
            'Real error %1.2e exceeds given tolerance %1.2e',errReal,errTol);
        throw(ME)
    else
        fprintf(' Real error is %1.3e, which is less than the tolerance %1.3e
', errReal, errTol)
    end
end
end
Acknowledgements

We thank the contributions of Aleksei Sorokin, Noah Grudowski, Francisco Hernandez, Cu Hauw Hung, Yueyi Li, Xincheng Sheng, Xiaoyang Zhao, Tianci Zhu, and the IIT classes of SCI 498 Adaptive Monte Carlo Algorithms with Applications to Financial Risk Management, Summer 2016; MATH 491 Reading & Research, Summer 2015; SCI 498/MATH 491 Computational Social Sciences, Summer 2016; MATH 491-195 Solving Problems in the Social Sciences Using Tools from Computational Mathematics and Statistics, Summer 2015; Math 573 Reliable Mathematical Software, Fall 2013.

References


