Case | Time for Fall |
Brass weight inside (2.5 cm) Cu pipe | 0.58 sec |
Cow Magnet inside (2.5cm) Cu pipe | 0.6 sec |
Cow Magnet inside concentric Cu pipes | 1.7 sec |
Strong magnet inside 4 cm Al pipe | 3.0 sec |
Strong magnet inside 2.5 cm Cu pipe | 7.7 sec |
Strong magnet inside concentric Cu pipes | 11.3 sec |
A "pipe drop" was preformed by the late Alex Juniewicz at the SMILE meeting of 30 September 1997: ph930.htm.
Bill Blunk took an aluminum parking token [valid in parking meters throughout the mighty metropolis of Great Falls, Montana], and dropped it through the gap between the two small magnets. The token passed slowly through the field region, and then fell tot he floor. Interesting! For more details see the writeup of the the SMILE meeting of 08 September 1998: ph090898.htm.
Thanks for "dropping in", Marilynn and Don!
John Bozovsky [Chicago Discovery Academy: Bowen HS, Physics]
Rocket Altitude Measurement
John is a physics teacher who, for decades,
has motivated his students' interest in physics by getting them involved with
model rockets. Why can design construct, and send a model rocket to the
highest altitude, h? Which raises the question: how can
students measure h for their rockets? (handout) John
explained that, in practice, it is rather difficult to measure h, since
the rocket seldom goes straight up from the launch point, but tends to wander
off in some direction or another. With the aide of a colorful 3-D
scale model to show the geometry of the situation clearly, he showed us how to
find h using two observers, A and B, positioned at each end
of a baseline of length AB, laid out on the floor (presumed level) ahead
of time. Two large circles (about 1.5 meter radius) are drawn on
the floor centered at A and B at each end as well. When the
rocket reaches its highest altitude (zenith) at the position, Z, in space,
observer A uses his Astrolabe
[http://www.astrolabes.org/astrolab.htm]
to record the angle, c, above floor level of the rocket, as shown:
Z (rocket zenith) Z (vertical plane) . | | . (different vertical plane) . | | . . | h h | . . c | | d . A--------X X-------- B(X is the point on the ground directly below Z. Similarly, observer B uses his astrolabe to record angle d.) Observer A -- immediately after recording the angle c on his astrolabe -- moves his astrolabe vertically downward to point toward X at floor level, and places a mark on his circle to enable measurement of angle a, with a protractor, which he does, as shown in the diagram below. Similarly, B marks his circle and measures angle b.
X (projection of location of rocket . . maximum height onto the ground) . . (plane of ground) . a b . A--------------BNote that, from the Law of Sines,
Information on the Astrolabe is given on the Encyclopędia Britannica website: http://www.britannica.com/clockworks/astrolabe.html. Seel also A Treatise on the Astrolabe by Geoffrey Chaucer [http://art-bin.com/art/oastro.html], which is considered to be the oldest technical manual in English.
The Estes Rocket Kits, which include the astrolabe (angle measuring device) may be ordered at the following URL: [http://www.hobbyconnection.com/estes.htm].This rocket launcher is part of the Physics Van demonstration exercises being developed at Chicago State University for delivery to and use in local high schools. for details contact John Bozovsky via email at jbozovsky@aol.com, or call Prof Mike Mimnaugh at Chicago State University (773) 995-2180.
John, this really is about rocket science! Thanks!
Monica Seelman [ST James Elementary School]
Bubble Trumpets and Bubble Recipes
Monica pulled out a Bubble Trumpet,
which she had obtained from Tangent Toy Company:
http://www.tangenttoy.com/trumpet.html.
(3 page handout) She had learned about this device from the article
Playthings of Science by Fred Guterl, which appeared in the December 1996 issue
of Discover Magazine: http://www.discover.com/issues/dec-96/.
When she dipped this device into the bubble solution, and then held it up and
blew hard on the mouthpiece, a froth filled with bubbles was produced. By
contrast, when she repeated the procedure and blew slowly but steadily, a single
large bubble came out of the trumpet. She then asked the following
questions:
Thanks for delving into the mysteries of bubble science, Monica!
Babatunde Taiwo [Dunbar HS, Physics]
Vernier Force Plate with Graphing Calculator
Babatunde had recently
obtained the Force Plate from Vernier Corporation: [http://www.vernier.com/probes/probes.html?fp-bta&template-standard.html].
He had used this apparatus to do various experiments involving impulses
generated by jumping onto the plates, as well as the distribution of weight when
one stands on two plates. He illustrated the operations by having Bill
Shanks stand on the force plate, and then jump into the air, and then land
on the plate again. Babatunde showed the recorded images of force
on the plate versus time. When Bill stood on the plate, the force
on the plate had a steady value of about 800 Newtons. As he jumped
the force spiked upward. and then went quickly down to zero. It remained
at zero while he was in the air, for about 0.2 seconds. When he
returned to the table there was another spike, similar to the first one. Babatunde
then determined the total impulse over the jump period from data by numerical
integration, and obtained about 700 Newton-seconds. Babatunde
then investigated how the force and impulse would change from these values (natural
lant here were more oscillations in the force in these two cases. In
addition, the net impulse was less for the crouch landing (500 N-s)
and the rigid landing (300 N-s) than for the natural landing
(700 N-s). Also, Don Kanner, the rigid jumper, could feel
the difference in his bones!
A very nice display of impacts, there for all to see! Thanks, Babatunde!!
We ran out of time before these participants could show their lessons:
Notes taken by Porter Johnson.